Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
- Data mining 1,113
- Big data 282
- Data processing 239
- Python (Computer program language) 186
- Machine learning 182
- Database management 129
- Engineering & Applied Sciences 116
- Artificial intelligence 113
- Management 113
- Mines and mineral resources 111
- Computer Science 106
- History 105
- Electronic data processing 103
- Computer programs 85
- Historia 74
- R (Computer program language) 71
- Minería 67
- Geology 64
- Development 60
- Information technology 60
- Application software 59
- Technology: general issues 58
- Data Mining and Knowledge Discovery 57
- Business 56
- History of engineering & technology 53
- Computer networks 52
- Social aspects 52
- Spark (Electronic resource : Apache Software Foundation) 52
- Web usage mining 50
- Business & Economics 48
-
1801Publicado 2020Materias: “…Data mining…”
Libro electrónico -
1802Publicado 2013Materias:Libro electrónico
-
1803
-
1804
-
1805
-
1806
-
1807
-
1808
-
1809Publicado 2015Materias:Libro electrónico
-
1810
-
1811Publicado 2014Materias:Libro electrónico
-
1812Publicado 2013Materias:
-
1813Publicado 2017Tabla de Contenidos: “…Filter out all but the TMIN entries -- Create (station ID, temperature) key/value pairs -- Find minimum temperature by station ID -- Collect and print results -- Running the minimum temperature example and modifying it for maximums -- Examining the min-temperatures script -- Running the script -- Running the maximum temperature by location example -- Counting word occurrences using flatmap() -- Map versus flatmap -- Map () -- Flatmap () -- Code sample - count the words in a book -- Improving the word-count script with regular expressions -- Text normalization -- Examining the use of regular expressions in the word-count script -- Running the code -- Sorting the word count results -- Step 1 - Implement countByValue() the hard way to create a new RDD -- Step 2 - Sort the new RDD -- Examining the script -- Running the code -- Find the total amount spent by customer -- Introducing the problem -- Strategy for solving the problem -- Useful snippets of code -- Check your results and sort them by the total amount spent -- Check your sorted implementation and results against mine -- Summary -- Chapter 3: Advanced Examples of Spark Programs -- Finding the most popular movie -- Examining the popular-movies script -- Getting results -- Using broadcast variables to display movie names instead of ID numbers -- Introducing broadcast variables -- Examining the popular-movies-nicer.py script -- Getting results -- Finding the most popular superhero in a social graph -- Superhero social networks -- Input data format -- Strategy -- Running the script - discover who the most popular superhero is -- Mapping input data to (hero ID, number of co-occurrences) per line -- Adding up co-occurrence by hero ID -- Flipping the (map) RDD to (number, hero ID) -- Using max() and looking up the name of the winner -- Getting results…”
Libro electrónico -
1814
-
1815Publicado 2017Materias: “…Data mining…”
-
1816Publicado 2019Materias:Libro electrónico
-
1817Publicado 2020Materias:Libro electrónico
-
1818Publicado 2020Materias:Libro electrónico
-
1819
-
1820