Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
- Mathematics 1,595
- Matemáticas 1,363
- Mathematical models 702
- Data processing 452
- Mathematical statistics 286
- Study and teaching 238
- Filosofía 230
- Modelos matemáticos 222
- Physical Sciences & Mathematics 216
- Statistics 202
- Education 198
- Science 191
- Machine learning 169
- Matemàtica 169
- Python (Computer program language) 169
- Artificial intelligence 165
- Computer science 162
- Estudio y enseñanza 154
- Lógica matemática 151
- Physics 145
- Finance 139
- Engineering mathematics 126
- Mathematical optimization 121
- Engineering & Applied Sciences 116
- Estadística matemática 109
- Mathématiques 107
- Mathematics & science 106
- Mathematics|Science|Sciences 106
- Engineering 105
- Historia 102
-
12421Publicado 2015Tabla de Contenidos: “…Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- Abbreviations -- Chapter 1 Introduction -- Chapter 2 Least-Squares Adjustments -- 2.1 Elementary Considerations -- 2.1.1 Statistical Nature of Surveying Measurements -- 2.1.2 Observational Errors -- 2.1.3 Accuracy and Precision -- 2.2 Stochastic and Mathematical Models -- 2.3 Mixed Model -- 2.3.1 Linearization -- 2.3.2 Minimization and Solution -- 2.3.3 Cofactor Matrices -- 2.3.4 A Posteriori Variance of Unit Weight -- 2.3.5 Iterations -- 2.4 Sequential Mixed Model -- 2.5 Model Specifications -- 2.5.1 Observation Equation Model -- 2.5.2 Condition Equation Model -- 2.5.3 Mixed Model with Observation Equations -- 2.5.4 Sequential Observation Equation Model -- 2.5.5 Observation Equation Model with Observed Parameters -- 2.5.6 Mixed Model with Conditions -- 2.5.7 Observation Equation Model with Conditions -- 2.6 Minimal and Inner Constraints -- 2.7 Statistics in Least-Squares Adjustment -- 2.7.1 Fundamental Test -- 2.7.2 Testing Sequential Least Squares -- 2.7.3 General Linear Hypothesis -- 2.7.4 Ellipses as Confidence Regions -- 2.7.5 Properties of Standard Ellipses -- 2.7.6 Other Measures of Precision -- 2.8 Reliability -- 2.8.1 Redundancy Numbers -- 2.8.2 Controlling Type-II Error for a Single Blunder -- 2.8.3 Internal Reliability -- 2.8.4 Absorption -- 2.8.5 External Reliability -- 2.8.6 Correlated Cases -- 2.9 Blunder Detection -- 2.9.1 Tau Test -- 2.9.2 Data Snooping -- 2.9.3 Changing Weights of Observations -- 2.10 Examples -- 2.11 Kalman Filtering -- Chapter 3 Recursive Least Squares -- 3.1 Static Parameter -- 3.2 Static Parameters and Arbitrary Time-Varying Variables -- 3.3 Dynamic Constraints -- 3.4 Static Parameters and Dynamic Constraints -- 3.5 Static Parameter, Parameters Subject to Dynamic Constraints, and Arbitrary Time-Varying Parameters…”
Libro electrónico -
12422Publicado 2018Tabla de Contenidos: “…Before we begin: the mathematical building blocks of neural networks -- 2.1. …”
Libro electrónico -
12423Publicado 2013Tabla de Contenidos: “…1.16 Tools -- Summary -- Exercises -- Chapter 2: Preliminaries:Mathematical -- 2.1 Predicates and Boolean Expressions -- 2.2 Control Flow Graph -- 2.2.1 Basic blocks -- 2.2.2 Flow graphs -- 2.2.3 Paths -- 2.2.4 Basis paths -- 2.2.5 Path conditions and domains -- 2.2.6 Domain and computation errors -- 2.2.7 Static code analysis tools and static testing -- 2.3 Execution History -- 2.4 Dominators and Post-Dominators -- 2.5 Program Dependence Graph -- 2.5.1 Data dependence -- 2.5.2 Control dependence -- 2.5.3 Call graph -- 2.6 Strings, Languages, and Regular Expressions -- 2.7 Tools -- Summary -- Exercises -- Part II: Test Generation -- Chapter 3: Domain Partitioning -- 3.1 Introduction -- 3.2 The Test Selection Problem -- 3.3 Equivalence Partitioning -- 3.3.1 Faults targeted -- 3.3.2 Relations -- 3.3.3 Equivalence classes for variables -- 3.3.4 Unidimensional partitioning versus multidimensional partitioning -- 3.3.5 A systematic procedure -- 3.3.6 Test selection -- 3.3.7 Impact of GUI design -- 3.4 Boundary Value Analysis -- 3.5 Category-Partition Method -- 3.5.1 Steps in the category-partition method -- Summary -- Exercises -- Chapter 4: Predicate Analysis -- 4.1 Introduction -- 4.2 Domain Testing -- 4.2.1 Domain errors -- 4.2.2 Border shifts -- 4.2.3 ON-OFF points -- 4.2.4 Undetected errors -- 4.2.5 Coincidental correctness -- 4.2.6 Paths to be tested -- 4.3 Cause-Effect Graphing -- 4.3.1 Notation used in cause-effect graphing -- 4.3.2 Creating cause-effect graphs -- 4.3.3 Decision table from cause-effect graph -- 4.3.4 Heuristics to avoid combinatorial explosion -- 4.3.5 Test generation from a decision table -- 4.4 Tests Using Predicate Syntax -- 4.4.1 A fault model -- 4.4.2 Missing or extra Boolean variable faults -- 4.4.3 Predicate constraints -- 4.4.4 Predicate testing criteria -- 4.4.5 BOR, BRO, and BRE adequate tests…”
Libro electrónico -
12424Publicado 2024Tabla de Contenidos: “…12.3.3 LPG Detecting System -- 12.3.3.1 Materials Description -- 12.3.3.2 Circuit Diagram -- 12.3.3.3 Power Consumption -- 12.3.3.4 Components Required -- 12.3.4 Materials Description -- 12.3.4.1 NodeMCU 8266 -- 12.3.5 Online Switch -- 12.3.5.1 Components Required -- 12.3.5.2 Circuit Diagram -- 12.3.5.3 Materials Description -- 12.3.5.4 Projects in Smart House Systems -- 12.3.6 Introducing Image Processing -- 12.3.6.1 Image Processing -- 12.3.6.2 Machine Learning in Automation -- 12.3.6.3 Online Switch -- 12.3.6.4 Machine Learning Module -- 12.3.7 Plants Health Monitoring -- 12.3.7.1 Components Required -- 12.3.7.2 Working of the System -- 12.4 Future Scope -- 12.5 Conclusion -- References -- Chapter 13 Multi-Robot Navigation: A Biologically Inspired Framework -- 13.1 Introduction -- 13.1.1 Motivation -- 13.2 Optimization Algorithms -- 13.2.1 Mathematical Formulation -- 13.2.2 Gradient-Based Approaches -- 13.2.3 Gradient-Free Algorithm -- 13.2.4 Nature-Inspired Optimization Algorithms -- 13.2.5 Genetic Algorithms -- 13.2.6 Particle Swarm Optimization -- 13.2.7 Ant Colony Optimization -- 13.2.8 Grey Wolf Algorithm -- 13.2.9 Arithmetic Algorithm -- 13.2.10 Aquila Optimization Algorithm -- 13.2.11 Different Algorithms -- 13.3 Algorithms and Self-Organization -- 13.3.1 Algorithmic Attributes -- 13.3.2 Comparison With Classical Optimization Techniques -- 13.3.3 Self-Organized Systems -- 13.4 Future Research Directions -- 13.5 Conclusion -- References -- Chapter 14 Bidirectional LSTM for Heart Arrhythmia Detection -- 14.1 Introduction -- 14.2 About the Dataset -- 14.3 Flow of the Model -- 14.4 Results -- 14.5 Conclusion -- References -- Chapter 15 Study on Content-Based Image Retrieval -- 15.1 Introduction -- 15.2 Related Works -- 15.2.1 Conventional-Indexing Techniques -- 15.2.2 Dimensionality's Curse -- 15.2.2.1 Parallel Architecture -- 15.2.2.2 Hashing…”
Libro electrónico -
12425por Khare, VikasTabla de Contenidos: “…3.3.1.7 Different statistical method -- 3.3.1.7.1 Central tendency -- Mean -- Why do not use the mean -- Median -- Mode -- Variance and standard deviation -- Z-score -- Quartiles -- Percentile -- 3.4 Measurement and scaling concepts -- 3.4.1 Comparative scales -- 3.4.1.1 Paired comparison scale -- 3.4.1.2 Rank order scale -- 3.4.1.3 Constant sum scale -- 3.4.1.4 Q-sort scale -- 3.4.2 Non-comparative scales -- 3.4.2.1 Continuous rating scale -- 3.4.2.2 Itemized rating scale -- 3.4.2.2.1 Likert scale -- 3.4.2.2.2 Stapel scale -- 3.4.2.2.3 Semantic differential scale -- 3.5 Various types of scale -- 3.5.1 Nominal -- 3.5.2 Ordinal -- 3.5.3 Interval -- 3.5.4 Ratio -- 3.6 Primary data analysis with Python -- 3.7 Conclusion -- 3.8 Case study -- 3.8.1 Case study: taxonomy of data in a healthcare organization -- 3.8.2 Case study: taxonomy of data in the automobile industry -- 3.8.3 Case study on the data theory -- 3.9 Exercise -- 3.9.1 Objective type question -- 3.9.2 Descriptive type question -- Further reading -- 4 Multivariate data analytics and cognitive analytics -- Abbreviations -- 4.1 Introduction -- 4.2 Factor analytics -- 4.3 Principal component analytics -- 4.4 Cluster analytics -- 4.4.1 K-means -- 4.4.1.1 Algorithms -- 4.4.1.2 K-means clustering -- 4.1.2.1 Steps of the K-means clustering algorithm -- 4.1.2.2 Practice problems based on K-means clustering algorithm -- 4.4.2 Cluster analysis of driverless car dataset -- 4.4.2.1 Problem -- 4.5 Linear regression analysis -- 4.5.1 Mathematical expression for regression analysis -- 4.5.2 Solved example of linear regression analysis of driverless car -- 4.5.2.1 Problem -- 4.5.2.2 Solution -- 4.6 Logistic regression analysis -- 4.7 Application of analytics across value chain -- 4.8 Multivariate data analytics with Python -- 4.9 Conclusion -- 4.10 Case study…”
Publicado 2024
Libro electrónico -
12426
-
12427
-
12428
-
12429
-
12430
-
12431por Bindel, Ernst“…The author, Ernst Bindel, integrates insights from theosophy and ancient texts to present a comprehensive view of numbers beyond their mathematical functions. The work aims to make complex ideas accessible to a broader audience by avoiding intricate mathematical operations and focusing on the symbolic and spiritual aspects of numbers. …”
Publicado 2014
Biblioteca Universitat Ramon Llull (Otras Fuentes: Biblioteca de la Universidad Pontificia de Salamanca, Universidad Loyola - Universidad Loyola Granada)Libro electrónico -
12432Publicado 2020“…The aim of this book is to provide the reader with a selection of methods in the field of mathematical modeling, simulation, and control of different dynamical systems. …”
Libro electrónico -
12433Publicado 2017“…LICS is an annual international forum on the broad range of topics that lie at the intersection of computer science and mathematical logic…”
Libro electrónico -
12434
-
12435
-
12436
-
12437
-
12438
-
12439
-
12440