Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
- Big data 62
- Cloud computing 59
- Data mining 35
- Data processing 33
- Database management 33
- Machine learning 31
- Electronic data processing 29
- Application software 28
- Development 24
- Python (Computer program language) 22
- Artificial intelligence 20
- Distributed processing 19
- Amazon Web Services (Firm) 18
- Examinations 18
- Management 18
- Apache Hadoop 16
- Microsoft Azure (Computing platform) 16
- Internet of things 13
- Computer programs 12
- Spark (Electronic resource : Apache Software Foundation) 12
- Digital video 11
- Editing 11
- Information storage and retrieval systems 10
- Information visualization 10
- Microsoft .NET Framework 10
- Computer architecture 9
- Computer networks 9
- Open source software 9
- Real-time data processing 9
- Web services 9
-
141Publicado 2017“….), you'll use "KIKS" to create an app that demonstrates the real-time ingestion, persistence, and visualization of time-series events. …”
-
142Publicado 2017“…This course shows you how to use a range of AWS services to create intelligent end-to-end applications that incorporate ingestion, storage, preprocessing, machine learning (ML), and connectivity to an application client or server. …”
-
143Publicado 2019“…Data Engineering instruction covers the ingestion, cleaning, and maintenance of data on AWS. …”
-
144Publicado 2022“…Follow Google's own ten-step plan to construct a secure, reliable, and extensible foundation for all your Google Cloud base infrastructural needs Key Features Build your foundation in Google Cloud with this clearly laid out, step-by-step guide Get expert advice from one of Google's top trainers Learn to build flexibility and security into your Google Cloud presence from the ground up Book Description From data ingestion and storage, through data processing and data analytics, to application hosting and even machine learning, whatever your IT infrastructural need, there's a good chance that Google Cloud has a service that can help. …”
Libro electrónico -
145Publicado 2023“…Sie lernen, die Konzepte der Generierung, Ingestion, Orchestrierung, Transformation, Speicherung und Bereitstellung von Daten anzuwenden, die in jeder Datenumgebung – unabhängig von der konkret verwendeten Technologie – von entscheidender Bedeutung sind.- Erhalten Sie einen kompakten Überblick über die gesamte Praxis des Data Engineering- Beurteilen Sie Problemstellungen im Data Engineering anhand eines umfassenden Frameworks von Best Practices- Wählen Sie geeignete Datentechnologien, -architekturen und -prozesse jenseits des Marketing-Hypes aus- Nutzen Sie den Data Engineering Lifecycle, um eine robuste Infrastruktur zu entwerfen und aufzubauen- Erfahren Sie, wie Sie Data Governance und Sicherheit in den gesamten Lebenszyklus Ihrer Daten integrieren…”
Libro electrónico -
146Publicado 2023Tabla de Contenidos: “…-- Data Loading via Internal Stages -- Data Ingestion Using the Named External Stage -- Loading Data via the Snowflake Web UI -- Basic Data Transformations While Ingesting -- External Tables -- Semi-Structured Data -- Unloading Data from Snowflake -- Load Near-Real-Time Streaming Data -- Optimizing Data Loading and Unloading -- Summary -- Exam Essentials -- Review Questions -- Chapter 5: Data Pipelines -- Introducing Tasks -- Introducing Streams -- Summary -- Exam Essentials -- Review Questions -- Chapter 6: Continuous Data Protection -- Components of Continuous Data Protection…”
Libro electrónico -
147por Katz, David L., 1963-Tabla de Contenidos: “…31 Alimentación y senectud -- 32 Efectos ergógenos de los alimentos y los nutrimentos: alimentación y rendimiento deportivo y nutrición para el deporte -- 33 Efectos endocrinos de la alimentación: fitoestrógenos -- 34 Alimentación, ciclos de sueño y vigilia y estado de ánimo -- 35 Alimentación y función cognitiva -- 36 Alimentación y visión -- 37 Alimentación y dentición -- 38 Hambre, apetito, gusto y saciedad -- 39 Efectos del chocolate sobre la salud -- 40 Efectos del etanol sobre la salud -- 41 Efectos del café sobre la salud -- 42 Sustitutos alimentarios de macronutrimentos -- 43 Vegetarianismo, veganismo y alimentación macrobiótica -- SECCIÓN IV Alimentación y promoción de la salud: la nutrición prudente -- 44 Cultura, biología evolutiva y determinantes de las preferencias alimentarias -- 45 Recomendaciones alimentarias para la promoción de la salud y la prevención de enfermedades -- SECCIÓN V Principios del asesoramiento alimentario eficaz -- 46 Modelos de modificación conductual para los patrones de alimentación, actividad y control de peso -- 47 Asesoramiento alimentario en la práctica clínica -- SECCIÓN VI Controversias en nutrición clínica contemporánea -- 48 La caloría -- 49 La búsqueda de chivos expiatorios y soluciones mágicas -- 50 La obesidad como enfermedad -- SECCIÓN VII Apéndices y materiales de consulta -- APÉNDICE A Fórmulas nutricionales de interés clínico -- APÉNDICE B Tablas de valoración del crecimiento y el peso corporal -- APÉNDICE C Valoración de la ingestión alimentaria en la población estadounidense -- APÉNDICE D Instrumentos para la valoración de la ingestión alimentaria -- APÉNDICE E Tablas de referencia de nutrimentos y productos nutricéuticos: límites de ingestión y fuentes alimentarias -- APÉNDICE F Fuentes de información para la composición de nutrimentos de los alimentos…”
Publicado 2015
Biblioteca Universitat Ramon Llull (Otras Fuentes: Universidad Loyola - Universidad Loyola Granada, Biblioteca de la Universidad Pontificia de Salamanca)Libro electrónico -
148Publicado 2009Tabla de Contenidos: “…-- REDCINE -- REDrushes -- REDLine -- Third-Party Applications -- Crimson Workflow -- Monkey Extract -- Clipfinder -- Color and Gamma Space -- Color space settings -- Gamma space settings -- First Person POV: Brook Willard -- CHAPTER 10: Apple Final Cut Pro Workflow -- System Requirements -- Ingesting Footage -- Editing -- Color Correcting -- Sending to Color -- Using Cinema Tools -- Sharing with Other Formats -- Alternate Workflows -- The native-wrapped method -- The proxy method…”
Libro electrónico -
149por Nwanganga, FredTabla de Contenidos: “…-- Data Science -- Data Science, Machine Learning, and Artificial Intelligence -- Common Applications of Data Science -- Data Science Best Practices -- Data Science Workflow Models -- Common Tools and Techniques -- Summary -- Exam Essentials -- Review Questions -- Chapter 2 Mathematics and Statistical Methods -- Calculus -- Derivatives -- Integrals -- Probability Distributions -- Continuous Probability Distributions -- Discrete Probability Distributions -- Inferential Statistics -- Estimating Population Parameters -- Hypothesis Testing -- Linear Algebra -- Vectors -- Matrices -- Summary -- Exam Essentials -- Review Questions -- Chapter 3 Data Collection and Storage -- Common Data Sources -- Generated Data -- Synthetic Data -- Commercial or Public Data -- Data Ingestion -- Data Ingestion Methods -- Infrastructure Requirements -- Data Ingestion Pipeline -- Data Storage -- Structured Storage -- Unstructured Storage -- Semi-Structured Storage -- Compressed Formats -- Managing the Data Lifecycle -- Data Lineage -- Refresh Cycles -- Archiving -- Summary -- Exam Essentials -- Review Questions -- Chapter 4 Data Exploration and Analysis -- Exploratory Data Analysis -- Quantitative Variables -- Qualitative Variables -- Univariate Analysis -- Bivariate Analysis -- Multivariate Analysis -- Choosing an Exploratory Data Analysis Method -- Common Data Quality Issues -- Structural Issues -- Temporal Issues -- Completeness Issues -- Summary -- Exam Essentials…”
Publicado 2024
Libro electrónico -
150Publicado 2024Tabla de Contenidos: “…Cover -- Title page -- Copyright and credits -- Dedication -- Contributors -- Table of Contents -- Preface -- Part 1: Docker and Kubernetes -- Chapter 1: Getting Started with Containers -- Technical requirements -- Container architecture -- Installing Docker -- Windows -- macOS -- Linux -- Getting started with Docker images -- hello-world -- NGINX -- Julia -- Building your own image -- Batch processing job -- API service -- Summary -- Chapter 2: Kubernetes Architecture -- Technical requirements -- Kubernetes architecture -- Control plane -- Node components -- Pods -- Deployments -- StatefulSets -- Jobs -- Services -- ClusterIP Service -- NodePort Service -- LoadBalancer Service -- Ingress and Ingress Controller -- Gateway -- Persistent Volumes -- StorageClasses -- ConfigMaps and Secrets -- ConfigMaps -- Secrets -- Summary -- Chapter 3: Getting Hands-On with Kubernetes -- Technical requirements -- Installing kubectl -- Deploying a local cluster using Kind -- Installing kind -- Deploying the cluster -- Deploying an AWS EKS cluster -- Deploying a Google Cloud GKE cluster -- Deploying an Azure AKS cluster -- Running your API on Kubernetes -- Creating the deployment -- Creating a service -- Using an ingress to access the API -- Running a data processing job in Kubernetes -- Summary -- Part 2: Big Data Stack -- Chapter 4: The Modern Data Stack -- Data architectures -- The Lambda architecture -- The Kappa architecture -- Comparing Lambda and Kappa -- Data lake design for big data -- Data warehouses -- The rise of big data and data lakes -- The rise of the data lakehouse -- Implementing the lakehouse architecture -- Batch ingestion -- Storage -- Batch processing -- Orchestration -- Batch serving -- Data visualization -- Real-time ingestion -- Real-time processing -- Real-time serving -- Real-time data visualization -- Summary…”
Libro electrónico -
151Publicado 2017“…Incluye problemas que se encuadran en áreas como: el trastorno disocial, la agresividad, los trastornos de la ingestión, la enuresis y la encopresis, los trastornos del aprendizaje, los problemas de la comunicación y el lenguaje, la timidez, el mutismo selectivo, el autismo, el asma, Además, trata varios temas sobre el entrenamiento de padres como agentes del cambio del comportamiento infantil y sobre terapia de juego. …”
Libro -
152Publicado 2015“…Since the ergoline ring structure found in ergot alkaloids is similar to that of biogenic amines (neurotransmitters), a variety of physiological effects can result after ingestion. Research involving ergot alkaloids is an increasing important global issue as more governments pass laws that limit permissible levels of ergot alkaloids in both foodstuffs and feedstuffs. …”
Libro electrónico -
153Publicado 2011“…We also introduce major expansion products that extend IBM FileNet P8 functionality in the areas of content ingestion, content accessing through connectors and federation, the application framework, and discovery and compliance. …”
Libro electrónico -
154Publicado 2015“…We provide concrete examples of how to perform tasks, such as file plan creation, records ingestion and declaration, records disposition, and records hold. …”
Libro electrónico -
155Publicado 2020“…NCGS is a term that is used to describe individuals who are not affected by celiac disease or wheat allergy, yet they have intestinal and/or extra-intestinal symptoms related to gluten ingestion with improvement of their symptoms upon withdrawing gluten from their diet. …”
Libro electrónico -
156Publicado 2022“…It describes key fuels of concern in WUI fires, especially household components like siding, insulation, and plastic, examines key pathways for exposure, including inhalation and ingestion, and identifies communities vulnerable to exposures. …”
Libro electrónico -
157Publicado 2022“…One of the major challenges organizations face in leveraging value out of data is building performant data engineering pipelines for data visualization, ingestion, storage, and processing. This second edition of the immensely successful book by Ahmad Osama brings to you several recent enhancements in Azure data engineering and shares approximately 80 useful recipes covering common scenarios in building data engineering pipelines in Microsoft Azure. …”
Libro electrónico -
158Publicado 2019“…"Reza Shiftehfar reflects on the challenges faced and proposes architectural solutions to scale a big data platform to ingest, store, and serve 100+ PB of data with minute-level latency while efficiently utilizing the hardware and meeting security needs. …”
Vídeo online -
159Publicado 2022“…Domain 1: Data Engineering 1.0 course intro 1.1 technology prerequisite 1.2 sagemaker studio lab 1.3 learn aws cloudshell 1.4 cloud developer workspace advantage 1.5 prototyping ai apis aws cloudshell bash 1.6 cloud9 with codewhisperer 1.7 domain one intro 1.8 data storage 1.9 determine storage medium 1.10 using s3 demo 1.11 job styles batch vs streaming 1.12 data ingestion pipelines 1.13 aws batch demo 1.14 step function demo Domain 2: Exploratory Data Analysis 2.0 domain intro Sanitize and prepare data for modeling 2.1 cleanup data 2.2 scaling data 2.3 labeling data 2.4 mechanical turk labeling Perform feature engineering 2.5 identify extract features 2.6 feature engineering concepts Analyze and visualize data for machine learning 2.7 graphing data 2.9 clustering Conclusion 2.10 conclusion Domain 3: Modeling 3.0 domain intro Frame business problems as machine learning problems 3.1 when to use ml 3.2 supervised vs unsupervized 3.3 selection right ml solution Select the appropriate model(s) for a given machine learning problem 3.4 select models 3.5 sagemaker canvas demo Train machine learning models 3.6 train test split 3.7 optimization 3.8 compute choice Perform hyperparameter optimization 3.14 neural network architecture Evaluate machine learning models 3.18 overfitting vs underfitting 3.19 selecting metrics 3.22 compare models experiment tracking Conclusion 3.23 Conclusion Domain 4: Machine Learning Implementation and Operations 4.0 course intro Build machine learning solutions for performance, availability, scalability, resiliency, and fault 4.1 logging monitoring 4.2 multiple regions 4.3 reproducible workflow 4.4 aws flavored devops Recommend and implement the appropriate machine learning services and features for a given 4.5 provisioning ec2 4.5 compute choices 4.6 provisioning ebs 4.7 aws ai ml services Apply basic AWS security practices to machine learning solutions. 4.9 plp aws lambda 4.10 integrated security Deploy and operationalize machine learning solutions 4.13 sagemaker workflow 4.14 doing predictions with sagemaker canvas 4.16 retrain models Conclusion 5.0 course conclusion Topics Covered Include: Domain 1: Data Engineering Domain 2: Exploratory Data Analysis Domain 3: Modeling Domain 4: Machine Learning Implementation and Operations Additional Popular Resources Pytest Master Class AWS Solutions Architect Professional Course Github Actions and GitOps in One Hour Video Course Jenkins CI/CD and Github in One Hour Video Course AWS Certified Cloud Practitioner Video Course Advanced Testing with Pytest Video Course AWS Solutions Architect Certification In ONE HOUR Python for DevOps Master Class 2022: CI/CD, Github Actions, Containers, and Microservices MLOPs Foundations: Chapter 2 Walkthrough of Practical MLOps Learn Docker containers in One Hour Video Course Introduction to MLOps Walkthrough AZ 900 (Azure Fundamentals) Quick reference guide 52 Weeks of AWS Episode 8: Infrastructure as Code with CDK and AWS Lambda Learn GCP Cloud Functions in One Hour Video Course Python Devops in TWO HOURS! …”
Video -
160Publicado 2022Tabla de Contenidos: “…-- First steps to serverless -- Building a video-encoding pipeline -- Preparing your system -- Starting with the Serverless framework -- Testing in AWS -- Looking at logs -- Architectures and patterns -- Use cases -- Patterns -- Use cases -- Yubl: architecture highlights, lessons learned -- The newserverlesss Yubl -- Migrating to new microservices gracefully -- A cloud guru: architecture highlights, lessons learned -- The original architecture -- Remnants of the legacy -- Yle: architecture highlights, lessons learned -- Ingesting events at scale with Fargate -- Processing events in real-time -- Lessons learned -- Practicum -- Building a scheduling service for ad hoc tasks -- Defining non-functional requirements -- Cron job with EventBridge -- DynamoDB TTL -- Step functions -- SQS -- Combining Dynamo TTL with SQS -- Choosing the right solution for your application -- The applications -- Architecting serverless parallel computing -- Introduction to MapReduce -- Architecture deep dive -- An alternative architecture -- Code developer university -- Solution overview -- The code scoring service -- Student profile service -- Analytics service -- The future -- Blackbelt Lambda -- Where to optimize? …”
Libro electrónico