Mostrando 1 - 20 Resultados de 118 Para Buscar '"Filament"', tiempo de consulta: 0.06s Limitar resultados
  1. 1
    por Tracy, David 1939-
    Publicado 2020
    Libro
  2. 2
    por Traub, Peter
    Publicado 1985
    Libro
  3. 3
    por Hersh, S. P.
    Publicado 1956
    Artículo
  4. 4
    por Levy, Joseph B.
    Publicado 1956
    Artículo
  5. 5
    por Hersh, S. P.
    Publicado 1955
    Artículo
  6. 6
    por Slack, John M.
    Publicado 1975
    Libro
  7. 7
    Publicado 2010
    Libro
  8. 8
    Publicado 2022
    Tabla de Contenidos: “…1 introduction 3 -- references 5 -- 2 intermediate filaments - from proteins to networks 9 -- 2.1 Structure and assembly of intermediate filament proteins 10 -- 2.2 Mechanical properties of single intermediate filaments 12 -- 2.2.1 Persistence length 12 -- 2.2.2 Stretching response . 13 -- 2.3 Networks of reconstituted intermediate filaments . 15 -- 2.4 Intermediate filament networks in cells . 16 -- 2.4.1 Structure and function of intermediate filament networks in cells 16 -- 2.4.2 Intermediate filament networks and cell mechanics 16 -- 2.4.3 Keratin networks in cells under load . 17 -- references 17 -- 3 biopolymer mechanics - theoretical and experimental principles 29 -- 3.1 Optical tweezers . 29 -- 3.1.1 Particle trapping 30 -- 3.1.2 Force detection . 31 -- 3.2 Microrheology 34 -- 3.2.1 Rheology of viscoelastic materials 34 -- 3.2.2 Passive microrheology: microparticle tracking . 34 -- 3.2.3 Active microrheology: optical trapping . 36 -- 3.3 Polymer mechanics . 38 -- 3.3.1 Entropic stretching of worm-like chains . 38 -- 3.3.2 Worm-like bundles . 39 -- 3.3.3 Networks of semiflexible polymers . 39 -- 3.4 Molecular reactions . 43 -- 3.4.1 Step-growth polymerization . 43 -- 3.4.2 Molecular reaction kinetics - two state models . 43 -- references 44 -- 4 materials and methods 51 -- 4.1 Vimentin preparation 51 -- 4.2 Maleimide functionalization of polystyrene beads . 52 -- 4.3 Stretching single filaments by optical trapping . 53 -- 4.4 Analysis of single filament mechanics 54 -- 4.5 Force-strain Monte-Carlo simulations 56 -- 4.6 Optical trap measurements of individual filament-filament interactions . 56 -- 4.7 Analysis of the interaction data 58 -- 4.8 Microrhelogy of reconstituted vimentin networks . 60 -- 4.9 Analysis of microrheology experiments . 61 -- 4.10 Imaging filament networks 63 -- 4.11 Imaging single filaments 63 -- 4.12 Analysis of filament lengths 64 -- 4.13 Finite element simulation of the microfluidic flowcell . 64 -- 4.14 Stretching MDCK II cells on elastic substrates . 65 -- 4.15 Analysis of images of stretched cells . 68 -- references 70 -- 5 tuning intermediate filament mechanics by variation of -- ph and ion charges 75 -- 5.1 Introduction . 76 -- 5.2 Results and discussion . 77 -- 5.2.1 Cations stiffen single vimentin IFs 77 -- 5.2.2 Stretching vimentin filament bundles 81 -- 5.2.3 IF mechanics adapt to pH changes 82 -- 5.2.4 IF stiffening saturates at low pH . 83 -- 5.2.5 Variations in the free energy landscapes influence filament mechanics 85 -- 5.3 Conclusions . 90 -- references 91 -- 6 multiscale mechanics and temporal evolution of vimentin -- intermediate filament networks 97 -- 6.1 Introduction . 98 -- 6.2 Results and discussion . 98 -- 6.2.1 Vimentin filament networks mature and stiffen on time scales of days 98 -- 6.2.2 The filament length depends on elongation and lateral association 100 -- 6.2.3 Electrostatic and hydrophobic interactions lead to mechanically distinct networks 101 -- 6.2.4 Maturation of networks is concentration dependent 104 -- 6.2.5 Surface effects modify network structures . 105 -- 6.2.6 Single filament mechanics are unaffected by detergents or divalent ions . 107 -- 6.2.7 Electrostatics increase single filament-filament interactions108 -- 6.2.8 Interactions are independent of binding-site encounter rate112 -- 6.2.9 A two-state model accurately describes network mechanics112 -- 6.3 Conclusions . 113 -- 6.4 Outlook 115 -- 6.4.1 Entropic and elastic stretching of single vimentin filaments115 -- 6.4.2 Single interactions of pre-strained filaments 117 -- references 119 -- 7 response of actin and keratin structures to isotropic cell stretching 125 -- 7.1 Introduction . 125 -- 7.2 Results and Discussion . 126 -- 7.2.1 Equibiaxial stretching of PDMS devices . 126 -- 7.2.2 The cell area increases during isotropic stretching . 128 -- 7.2.3 Actin stress fibers disassemble at increasing cell extension 129 -- 7.2.4 The keratin structure adapts to increasing strains . 131 -- 7.3 Conclusion 133 -- references 133 -- 8 discussion and conclusion 137 -- references 140 -- appendix 145 -- a supporting information: tuning intermediate filament mechanics by variation of ph and ion charges 145 -- a.1 Flow simulations 145 -- a.2 Single force-strain curves . 147 -- b supporting information: multiscale mechanics and temporal evolution of vimentin intermediate filament networks 149 -- b.1 Additional information for elongation measurements . 149 -- b.2 Data analysis of microrheology measurements . 152 -- b.3 Modeling single interactions 161 -- c supporting information: response of actin and keratin structures to isotropic cell stretching 167 -- references 169 -- Acknowledgments 172 -- List of acronyms 174 -- Publications 176.…”
    Libro electrónico
  9. 9
    Publicado 1958
    Artículo
  10. 10
    Publicado 2017
    Materias:
    Libro electrónico
  11. 11
  12. 12
    Publicado 2022
    Tesis
  13. 13
    Publicado 2020
    Materias:
    Libro electrónico
  14. 14
  15. 15
    por Bey, Paula
    Publicado 2010
    “…Se caracterizó la actividad de una nueva proteína supresora del PTGS, la proteína 15K codificada en el genoma del Garlic mite-borne filamentous virus (GmbFV). Si bien esta proteína muestra una actividad supresora débil en plantas silenciadas por agroinfiltración con transgenes u horquillas de silenciamiento, presenta la ventaja de no producir fenotipos aberrantes en plantas transgénicas. …”
    Enlace del recurso
    Tesis
  16. 16
    Publicado 2021
    Materias:
    Libro electrónico
  17. 17
  18. 18
    Publicado 2009
    “…Preliminary evaluation of fungicidal activity of essential oils of eucalyptus (Eucalyptus tereticornis, Myrtaceae) and orange peel (Citrus sinensis, Rutaceae) on some filamentous fungi…”
    Enlace del recurso
    Artículo digital
  19. 19
    Publicado 2021
    Materias:
    Libro electrónico
  20. 20
    Publicado 2022
    Materias:
    Libro electrónico