Mostrando 2,921 - 2,940 Resultados de 4,853 Para Buscar '"Extraction"', tiempo de consulta: 0.10s Limitar resultados
  1. 2921
    por Llobet, Gabriel de, 1936-
    Publicado 1982
    Libro
  2. 2922
    Publicado 2016
    991007259369706719
  3. 2923
    Publicado 2023
    991009723738706719
  4. 2924
    Publicado 2022
    991009646523406719
  5. 2925
    Publicado 2022
    991009649735106719
  6. 2926
  7. 2927
    Publicado 2022
    991009669338706719
  8. 2928
    Publicado 2023
    Tabla de Contenidos: “…Cover -- Title Page -- Copyright Page -- Dedication Page -- Contents -- Preface -- Acknowledgement -- Chapter 1 Band Reduction of HSI Segmentation Using FCM -- 1.1 Introduction -- 1.2 Existing Method -- 1.2.1 K-Means Clustering Method -- 1.2.2 Fuzzy C-Means -- 1.2.3 Davies Bouldin Index -- 1.2.4 Data Set Description of HSI -- 1.3 Proposed Method -- 1.3.1 Hyperspectral Image Segmentation Using Enhanced Estimation of Centroid -- 1.3.2 Band Reduction Using K-Means Algorithm -- 1.3.3 Band Reduction Using Fuzzy C-Means -- 1.4 Experimental Results -- 1.4.1 DB Index Graph -- 1.4.2 K-Means-Based PSC (EEOC) -- 1.4.3 Fuzzy C-Means-Based PSC (EEOC) -- 1.5 Analysis of Results -- 1.6 Conclusions -- References -- Chapter 2 A Fuzzy Approach to Face Mask Detection -- 2.1 Introduction -- 2.2 Existing Work -- 2.3 The Proposed Framework -- 2.4 Set-Up and Libraries Used -- 2.5 Implementation -- 2.6 Results and Analysis -- 2.7 Conclusion and Future Work -- References -- Chapter 3 Application of Fuzzy Logic to the Healthcare Industry -- 3.1 Introduction -- 3.2 Background -- 3.3 Fuzzy Logic -- 3.4 Fuzzy Logic in Healthcare -- 3.5 Conclusions -- References -- Chapter 4 A Bibliometric Approach and Systematic Exploration of Global Research Activity on Fuzzy Logic in Scopus Database -- 4.1 Introduction -- 4.2 Data Extraction and Interpretation -- 4.3 Results and Discussion -- 4.3.1 Per Year Publication and Citation Count -- 4.3.2 Prominent Affiliations Contributing Toward Fuzzy Logic -- 4.3.3 Top Journals Emerging in Fuzzy Logic in Major Subject Areas -- 4.3.4 Major Contributing Countries Toward Fuzzy Research Articles -- 4.3.5 Prominent Authors Contribution Toward the Fuzzy Logic Analysis -- 4.3.6 Coauthorship of Authors -- 4.3.7 Cocitation Analysis of Cited Authors -- 4.3.8 Cooccurrence of Author Keywords…”
    Libro electrónico
  9. 2929
    Tabla de Contenidos: “…Conférence multipartite organisée dans le cadre de l'initiative pour la transparence dans l'industrie extractive -- Document 2. Table ronde informelle sur la responsabilité des entreprises dans l'économie mondiale - Synthèse -- I. …”
    Libro electrónico
  10. 2930
    Publicado 2019
    Tabla de Contenidos: “…-- Acknowledgments -- 1 Introduction -- 1.1 AI, Machine learning, and Data Science -- 1.2 What is Data Science? -- 1.2.1 Extracting Meaningful Patterns -- 1.2.2 Building Representative Models -- 1.2.3 Combination of Statistics, Machine Learning, and Computing -- 1.2.4 Learning Algorithms -- 1.2.5 Associated Fields -- 1.3 Case for Data Science -- 1.3.1 Volume -- 1.3.2 Dimensions -- 1.3.3 Complex Questions -- 1.4 Data Science Classification -- 1.5 Data Science Algorithms -- 1.6 Roadmap for This Book -- 1.6.1 Getting Started With Data Science -- 1.6.2 Practice using RapidMiner -- 1.6.3 Core Algorithms -- References -- 2 Data Science Process -- 2.1 Prior Knowledge -- 2.1.1 Objective -- 2.1.2 Subject Area -- 2.1.3 Data -- 2.1.4 Causation Versus Correlation -- 2.2 Data Preparation -- 2.2.1 Data Exploration -- 2.2.2 Data Quality -- 2.2.3 Missing Values -- 2.2.4 Data Types and Conversion -- 2.2.5 Transformation -- 2.2.6 Outliers -- 2.2.7 Feature Selection -- 2.2.8 Data Sampling -- 2.3 Modeling -- 2.3.1 Training and Testing Datasets -- 2.3.2 Learning Algorithms -- 2.3.3 Evaluation of the Model -- 2.3.4 Ensemble Modeling -- 2.4 Application -- 2.4.1 Production Readiness -- 2.4.2 Technical Integration -- 2.4.3 Response Time -- 2.4.4 Model Refresh -- 2.4.5 Assimilation -- 2.5 Knowledge -- References -- 3 Data Exploration -- 3.1 Objectives of Data Exploration -- 3.2 Datasets -- 3.2.1 Types of Data -- Numeric or Continuous -- Categorical or Nominal -- 3.3 Descriptive Statistics -- 3.3.1 Univariate Exploration -- Measure of Central Tendency -- Measure of Spread -- 3.3.2 Multivariate Exploration -- Central Data Point -- Correlation -- 3.4 Data Visualization -- 3.4.1 Univariate Visualization -- Histogram…”
    Libro electrónico
  11. 2931
    Publicado 2017
    Tabla de Contenidos: “…Exclusion criteria -- 3.2.3. Data Extraction -- 3.2.4. Data Items -- 3.2.5. Quality Assessment of Selected Papers -- 3.3. …”
    Libro electrónico
  12. 2932
    Publicado 2024
    Tabla de Contenidos: “…JavaScript analysis -- Specialized web technology fingerprinting libraries -- Proactive web security measures with Python -- Input validation and data sanitization -- Secure authentication and authorization -- Secure session management -- Secure coding practices -- Implementing security headers -- Summary -- Chapter 4: Exploiting Web Vulnerabilities Using Python -- Web application vulnerabilities - an overview -- SQL injection -- XSS -- IDOR -- A case study concerning web application security -- SQL injection attacks and Python exploitation -- Features of SQLMap -- How SQLMap works -- Basic usage of SQLMap -- Intercepting with MITMProxy -- XSS exploitation with Python -- Understanding how XSS works -- Reflected XSS (non-persistent) -- Stored XSS (persistent) -- Python for data breaches and privacy exploitation -- XPath -- CSS Selectors -- Summary -- Chapter 5: Cloud Espionage - Python for Cloud Offensive Security -- Cloud security fundamentals -- Shared Responsibility Model -- Cloud deployment models and security implications -- Encryption, access controls, and IdM -- Security measures offered by major cloud providers -- Access control in cloud environments -- Impact of malicious activities -- Python-based cloud data extraction and analysis -- Risks of hardcoded sensitive data and detecting hardcoded access keys -- Enumerating EC2 instances using Python (boto3) -- Exploiting misconfigurations in cloud environments -- Types of misconfigurations -- Identifying misconfigurations -- Exploring Prowler's functionality -- Enhancing security, Python in serverless, and infrastructure as code (IaC) -- Introducing serverless computing -- Introduction to IaC -- Summary -- Part 3: Python Automation for Advanced Security Tasks -- Chapter 6: Building Automated Security Pipelines with Python Using Third-Party Tools…”
    Libro electrónico
  13. 2933
    Publicado 2019
    Tabla de Contenidos: “…Sources and Target Data Warehouse -- 2.2. Extract, Transform, and Load -- 2.3. Front-End Applications -- 3. …”
    Libro electrónico
  14. 2934
    Publicado 2017
    Tabla de Contenidos: “…11.6 The Tribology of Joint Replacements: Impact on Joint Lifetime -- 11.7 Point to the Future -- 11.8 Thought Exercise: Short-Term Surgical Viability Versus Long-Term Survival -- 11.9 Other Schemes to Reduce the Wear on Sterilized Surfaces -- 11.10 Conclusions -- 11.11 Problems -- References -- 12 Neural Interventions -- 12.1 Introduction -- 12.2 Aneurysm and Cerebrovascular Modulation -- 12.2.1 Clips -- 12.2.2 Coils -- 12.2.3 Embolic Fluids -- 12.2.3.1 Dispersion-based Embolics -- 12.2.3.2 Reactive Liquid Embolics -- 12.2.4 Filling of Other Defects -- 12.3 Neural Probes and Stimulators -- 12.4 Conclusion -- 12.5 Problems -- References -- 13 Cardiovascular Interventions -- 13.1 Introduction -- 13.2 Valvular Repairs: Rationale for Intervention: Murmurs, Regurgitation, Congestive Heart Failure -- 13.2.1 Sutures to Address Leaflet Tears -- 13.2.2 Annulolasty Rings -- 13.3 Prosthetic and Bioprosthetic Replacement Valves -- 13.4 Outcomes -- 13.5 Interchamber Defects -- 13.6 Vascular Grafts -- 13.6.1 Dacron Grafts -- 13.6.2 Expanded Polytetrafluoroethylene (ePTFE) -- 13.7 Stents -- 13.8 Drug Eluting Stents -- 13.9 Added Constraints: Pediatric Cardiac Interventions -- 13.10 Pacemakers, Defibrillators, and Associated Hardware -- 13.11 Conclusions -- 13.12 Pointing to the Future -- 13.13 Problems -- References -- 14 Artificial Organs -- 14.1 Kidney: Dialysis -- 14.1.1 Dialysis Options -- 14.1.2 Peritoneal Dialysis -- 14.1.3 Hemodialysis -- 14.1.4 Continuous Metabolite Extraction -- 14.2 Artificial Pancreas -- 14.3 Artificial Bladders -- 14.4 Pivoting to the future -- 14.5 Problems -- References -- 15 Special Topics: Assays Applied to Both Health and Sports -- 15.1 Introduction and Historical Basis -- 15.2 What Can be Learned From Urinalysis? …”
    Libro electrónico
  15. 2935
    Publicado 2023
    Tabla de Contenidos: “…8.2 Methodology -- 8.3 AI-Based Predictive Modeling -- 8.3.1 Linear Regression -- 8.3.2 Random Forests -- 8.3.3 XGBoost -- 8.3.4 SVM -- 8.4 Performance Indices -- 8.4.1 Root Mean Squared Error (RMSE) -- 8.4.2 Mean Squared Error (MSE) -- 8.4.3 R2 (R-Squared) -- 8.5 Results and Discussion -- 8.5.1 Key Performance Metrics (KPIs) During the Model Training Phase -- 8.5.2 Key Performance Index Metrics (KPIs) During the Model Testing Phase -- 8.5.3 K Cross Fold Validation -- 8.6 Conclusions -- References -- Chapter 9 Performance Comparison of Differential Evolutionary Algorithm-Based Contour Detection to Monocular Depth Estimation for Elevation Classification in 2D Drone-Based Imagery -- 9.1 Introduction -- 9.2 Literature Survey -- 9.3 Research Methodology -- 9.3.1 Dataset and Metrics -- 9.4 Result and Discussion -- 9.5 Conclusion -- References -- Chapter 10 Bioinspired MOPSO-Based Power Allocation for Energy Efficiency and Spectral Efficiency Trade-Off in Downlink NOMA -- 10.1 Introduction -- 10.2 System Model -- 10.3 User Clustering -- 10.4 Optimal Power Allocation for EE-SE Tradeoff -- 10.4.1 Multiobjective Optimization Problem -- 10.4.2 Multiobjective PSO -- 10.4.3 MOPSO Algorithm for EE-SE Trade-Off in Downlink NOMA -- 10.5 Numerical Results -- 10.6 Conclusion -- References -- Chapter 11 Performances of Machine Learning Models and Featurization Techniques on Amazon Fine Food Reviews -- 11.1 Introduction -- 11.1.1 Related Work -- 11.2 Materials and Methods -- 11.2.1 Data Cleaning and Pre-Processing -- 11.2.2 Feature Extraction -- 11.2.3 Classifiers -- 11.3 Results and Experiments -- 11.4 Conclusion -- References -- Chapter 12 Optimization of Cutting Parameters for Turning by Using Genetic Algorithm -- 12.1 Introduction -- 12.2 Genetic Algorithm GA: An Evolutionary Computational Technique -- 12.3 Design of Multiobjective Optimization Problem…”
    Libro electrónico
  16. 2936
    Publicado 2023
    Tabla de Contenidos: “…4.2.4 Cloud Computing -- 4.2.5 Blockchain -- 4.2.6 5G -- 4.3 Challenges in Transforming Digital Technology -- 4.3.1 Increasing Digitalization -- 4.3.2 Work From Home Culture -- 4.3.3 Workplace Monitoring and Techno Stress -- 4.3.4 Online Fraud -- 4.3.5 Accessing Internet -- 4.3.6 Internet Shutdowns -- 4.3.7 Digital Payments -- 4.3.8 Privacy and Surveillance -- 4.4 Implications for Research -- 4.5 Conclusion -- References -- Part II: Plant Pathology -- Chapter 5 Plant Pathology Detection Using Deep Learning -- 5.1 Introduction -- 5.2 Plant Leaf Disease -- 5.3 Background Knowledge -- 5.4 Architecture of ResNet 512 V2 -- 5.4.1 Working of Residual Network -- 5.5 Methodology -- 5.5.1 Image Resizing -- 5.5.2 Data Augmentation -- 5.5.2.1 Types of Data Augmentation -- 5.5.3 Data Normalization -- 5.5.4 Data Splitting -- 5.6 Result Analysis -- 5.6.1 Data Collection -- 5.6.2 Feature Extractions -- 5.6.3 Plant Leaf Disease Detection -- 5.7 Conclusion -- References -- Chapter 6 Smart Irrigation and Cultivation Recommendation System for Precision Agriculture Driven by IoT -- 6.1 Introduction -- 6.1.1 Background of the Problem -- 6.1.1.1 Need of Water Management -- 6.1.1.2 Importance of Precision Agriculture -- 6.1.1.3 Internet of Things -- 6.1.1.4 Application of IoT in Machine Learning and Deep Learning -- 6.2 Related Works -- 6.3 Challenges of IoT in Smart Irrigation -- 6.4 Farmers' Challenges in the Current Situation -- 6.5 Data Collection in Precision Agriculture -- 6.5.1 Algorithm -- 6.5.1.1 Environmental Consideration on Stage Production of Crop -- 6.5.2 Implementation Measures -- 6.5.2.1 Analysis of Relevant Vectors -- 6.5.2.2 Mean Square Error -- 6.5.2.3 Potential of IoT in Precision Agriculture -- 6.5.3 Architecture of the Proposed Model -- 6.6 Conclusion -- References -- Chapter 7 Machine Learning-Based Hybrid Model for Wheat Yield Prediction…”
    Libro electrónico
  17. 2937
    Publicado 2022
    Tabla de Contenidos: “…11.3.2.3 Application of 2D Nanomaterials in Photodynamic Therapy -- 11.3.3 2D Nanomaterials‐Cancer Detection/Diagnosis/Theragnostic -- 11.4 Tissue Engineering -- 11.5 Conclusion -- Acknowledgment -- References -- Chapter 12 Synthesis of Nanostructured Materials Via Green and Sol-Gel Methods: A Review -- 12.1 Introduction -- 12.2 Methods Used in Nanostructured Synthesis -- 12.2.1 Green Method of Nanoparticles Synthesis -- 12.2.2 Sol-Gel Method of Nanoparticles Synthesis -- 12.2.3 Green Method of Nanocomposites Synthesis -- 12.2.4 Sol-Gel Method of Nanocomposites -- 12.3 Discussion -- 12.4 Conclusion -- References -- Chapter 13 Study of Antimicrobial Activity of ZnO Nanoparticles Using Leaves Extract of Ficus auriculata Based on Green Chemistry Principles -- 13.1 Introduction -- 13.2 Materials and Methods -- 13.2.1 Chemicals -- 13.2.2 Methodology -- 13.2.3 Antimicrobial Activity -- 13.3 Results and Discussion -- 13.3.1 Characterization of Synthesized Zinc‐Oxide Nanoparticles (ZnONPs) -- 13.3.1.1 XRD Analysis -- 13.3.1.2 FT‐IR Analysis -- 13.3.1.3 SEM Analysis -- 13.3.1.4 TEM Analysis -- 13.3.2 Antibacterial Activity -- 13.4 Conclusion -- Acknowledgments -- References -- Chapter 14 Piezoelectric Properties of Na1−xKxNbO3 near x &amp -- equals -- 0.475, Morphotropic Phase Region -- 14.1 Introduction -- 14.2 Experimental Procedure -- 14.3 Results and Discussion -- References -- Chapter 15 Synthesis and Characterization of SDC Nano‐Powder for IT‐SOFC Applications -- 15.1 Introduction -- 15.1.1 Solid Oxide Fuel Cells (SOFCs) -- 15.1.2 Intermediate Temperature Solid Oxide Fuel Cells (IT‐SOFCs) -- 15.1.3 Why Samarium‐Doped Ceria (SDC) Material? …”
    Libro electrónico
  18. 2938
    Publicado 2024
    Tabla de Contenidos: “…8.3.1.2 Goals of Meetings with Senior Leadership -- 8.3.1.3 Meetings with Key Leaders -- 8.3.1.4 Execute the Communication Process -- 8.3.1.5 Conduct Interviews with Designated Leaders, Managers, and High-Priority Staff -- 8.3.1.6 Provide a Written Questionnaire for Remaining Designated Staff -- 8.3.1.7 Perform an Extensive Analysis of Findings -- 8.3.1.8 Creation of a Written Report with Detailed Study Findings -- 8.3.1.9 Present Findings to Leadership and Determine Next Steps -- 8.3.1.10 Presentation to the Organization -- 8.4 Redesigning an Organization to Execute with Data and Analytics -- 8.4.1 Business Knowledge -- 8.4.2 Data Knowledge -- 8.4.3 AI and Analytics Knowledge -- 8.4.4 Technology Stack-Architecture, Platforms, Systems -- 8.4.5 Culture -- 8.4.6 People -- 8.5 Conclusion -- References -- 9 Additional Stories on the Data Front -- 9.1 Managing the End-to-End Process of Patient Experience-Two Case Studies by Carol Maginn -- 9.1.1 Patient Case A -- 9.1.2 Patient Case B -- 9.1.3 Pricing Offers an Intuitively Simple Problem That Provides Use of the Most Complicated Mathematical Models -- 9.2 Textual Extraction, Transformation, and Learning -- 9.2.1 Some Sources of Textual Data -- 9.2.1.1 Voice Recordings -- 9.2.1.2 Printed Text -- 9.2.1.3 Internet and Social Media -- 9.2.1.4 Email -- 9.2.1.5 Electronic Texts as a Source -- 9.2.1.6 What Is a Taxonomy? …”
    Libro electrónico
  19. 2939
    por Harsch, Claudia
    Publicado 2024
    Tabla de Contenidos: “…5.1.3.1 Pilot testing -- 5.1.3.2 Eliciting DEs' indigenous IC criteria -- 5.1.3.3 Developing a DEs' indigenous IC criteria rating scale -- 5.1.3.4 Theoretically expanding the IC rating scale -- 5.2 Results and initial discussion of study two -- 5.2.1 Pilot test findings -- 5.2.2 Domain experts' indigenous IC criteria -- 5.2.2.1 Conflict management -- 5.2.2.2 Solidarity promotion -- 5.2.2.3 Reasoning skills -- 5.2.2.4 Personal qualities -- 5.2.2.5 Social relations -- 5.2.2.6 Linguistic choices -- 5.2.2.7 Prosodic features -- 5.2.2.8 The structure of talk -- 5.2.2.9 Strategies, cultural norms, and miscellaneous -- 5.2.3 An indigenous IC rating scale -- 5.2.3.1 Collapsing indigenous criteria into five rating categories -- 5.2.3.2 Identifying steps in the rating categories -- 5.2.3.3 Identifying sub rating categories and extracting descriptors -- 5.2.3.4 Indigenous rating category: Conflict management -- 5.2.3.5 Indigenous rating category: Solidarity promotion -- 5.2.3.6 Indigenous rating category: Personal qualities -- 5.2.3.7 Indigenous rating category: Reasoning skills -- 5.2.3.8 Indigenous rating category: Social relations -- 5.2.4 CA and MCA validation and the generation of exemplars -- 5.2.4.1 The rationale behind the CA and MCA validation of the scale -- 5.2.4.2 The sample test task and the pilot test test-takers selected -- 5.2.4.3 Theorizing conflict management and social relations -- 5.2.4.4 Theorizing solidarity promotion and reasoning skills -- 5.2.4.5 Theorizing personal qualities -- 5.2.4.6 Address terms in social role management -- 5.2.4.7 Categories and predicates -- 5.2.4.8 Beginner L2-speakers' category knowledge -- 5.2.4.9 The power of categorization -- 5.2.5 A theorized IC rating scale -- 5.2.5.1 Theorized rating category: Disaffiliation control -- 5.2.5.2 Theorized rating category: Affiliation promotion…”
    Libro electrónico
  20. 2940
    por Brown, Iain
    Publicado 2024
    Tabla de Contenidos: “…-- 6.0.2 Simple Analogy: The Recipe of Language -- 6.0.3 Natural Language Processing in Everyday Marketing -- 6.0.4 Let's Dive Deeper -- 6.1 Introduction to Natural Language Processing -- 6.1.1 Overview of Natural Language Processing -- 6.1.2 Importance of Natural Language Processing in Marketing -- 6.1.3 Components of Natural Language Processing: Syntax, Semantics, and Pragmatics -- 6.1.4 Challenges in Natural Language Processing -- 6.2 Text Preprocessing and Feature Extraction in Marketing Natural Language Processing -- 6.2.1 Tokenization and Stemming -- 6.2.2 Stop Word Removal -- 6.2.3 Vectorization: Bag of Words and TF-IDF -- 6.2.4 Word Embeddings: Word2Vec, GloVe -- 6.3 Key Natural Language Processing Techniques for Marketing -- 6.3.1 Text Analytics -- 6.3.2 Sentiment Analysis -- 6.3.3 Topic Modeling -- 6.3.4 Named Entity Recognition -- 6.3.5 Text Classification -- 6.4 Chatbots and Voice Assistants in Marketing…”
    Libro electrónico