Mostrando 19,261 - 19,280 Resultados de 21,406 Para Buscar '"Architecture"', tiempo de consulta: 0.13s Limitar resultados
  1. 19261
    por Taylor, Rabun M.
    Publicado 2006
    Libro
  2. 19262
    Publicado 2004
    Libro
  3. 19263
    por Olson, Sherri, 1954-
    Publicado 2001
    Libro
  4. 19264
    Libro
  5. 19265
    por 3XNielsen (Firma).
    Publicado 2003
    Libro
  6. 19266
    por Manfredi, Michael A., 1953-
    Publicado 2008
    Libro
  7. 19267
    Publicado 1989
    Libro
  8. 19268
    por Salingaros, Nikos Angelos
    Publicado 2018
    Libro
  9. 19269
    Libro
  10. 19270
    Publicado 2008
    Libro
  11. 19271
    por Baden-Powell, Charlotte, 1936-
    Publicado 2001
    Libro
  12. 19272
    Publicado 2019
    “…This is the go-to guide for BIM Coordinators and Managers, architectural principals, design team leaders and architectural technicians ensuring you are ‘BIM ready’ in 2016. …”
    Libro electrónico
  13. 19273
    Publicado 2018
    “…They explain how to create a holistic vision for the future enterprise and how to generate concepts and alternative architectures; they describe techniques for evaluating possible architectures, tools for implementation planning, and strategies for communicating with stakeholders…”
    Grabación musical
  14. 19274
    Publicado 2003
    “…There are 3 full scale design examples that include specification, architectural definition, micro-architectural definition, RTL coding, testbench coding and verification. …”
    Libro electrónico
  15. 19275
    por Robey, Robert
    Publicado 2021
    Tabla de Contenidos: “…8.5 Advanced MPI functionality to simplify code and enable optimizations -- 8.5.1 Using custom MPI data types for performance and code simplification -- 8.5.2 Cartesian topology support in MPI -- 8.5.3 Performance tests of ghost cell exchange variants -- 8.6 Hybrid MPI plus OpenMP for extreme scalability -- 8.6.1 The benefits of hybrid MPI plus OpenMP -- 8.6.2 MPI plus OpenMP example -- 8.7 Further explorations -- 8.7.1 Additional reading -- 8.7.2 Exercises -- Summary -- Part 3 GPUs: Built to accelerate -- 9 GPU architectures and concepts -- 9.1 The CPU-GPU system as an accelerated computational platform -- 9.1.1 Integrated GPUs: An underused option on commodity-based systems -- 9.1.2 Dedicated GPUs: The workhorse option -- 9.2 The GPU and the thread engine -- 9.2.1 The compute unit is the streaming multiprocessor (or subslice) -- 9.2.2 Processing elements are the individual processors -- 9.2.3 Multiple data operations by each processing element -- 9.2.4 Calculating the peak theoretical flops for some leading GPUs -- 9.3 Characteristics of GPU memory spaces -- 9.3.1 Calculating theoretical peak memory bandwidth -- 9.3.2 Measuring the GPU stream benchmark -- 9.3.3 Roofline performance model for GPUs -- 9.3.4 Using the mixbench performance tool to choose the best GPU for a workload -- 9.4 The PCI bus: CPU to GPU data transfer overhead -- 9.4.1 Theoretical bandwidth of the PCI bus -- 9.4.2 A benchmark application for PCI bandwidth -- 9.5 Multi-GPU platforms and MPI -- 9.5.1 Optimizing the data movement between GPUs across the network -- 9.5.2 A higher performance alternative to the PCI bus -- 9.6 Potential benefits of GPU-accelerated platforms -- 9.6.1 Reducing time-to-solution -- 9.6.2 Reducing energy use with GPUs -- 9.6.3 Reduction in cloud computing costs with GPUs -- 9.7 When to use GPUs -- 9.8 Further explorations -- 9.8.1 Additional reading…”
    Libro electrónico
  16. 19276
    Publicado 2021
    Tabla de Contenidos: “…-- 1.4.3 The pros and cons of creating labels by evaluating machine learning predictions -- 1.4.4 Basic principles for designing annotation interfaces -- 1.5 Machine-learning-assisted humans vs. human-assisted machine learning -- 1.6 Transfer learning to kick-start your models -- 1.6.1 Transfer learning in computer vision -- 1.6.2 Transfer learning in NLP -- 1.7 What to expect in this text -- Summary -- 2 Getting started with human-in-the-loop machine learning -- 2.1 Beyond hacktive learning: Your first active learning algorithm -- 2.2 The architecture of your first system -- 2.3 Interpreting model predictions and data to support active learning -- 2.3.1 Confidence ranking -- 2.3.2 Identifying outliers…”
    Libro electrónico
  17. 19277
    Publicado 2021
    Tabla de Contenidos: “…CPU -- 7.1.2 Downloading the clothing dataset -- 7.1.3 TensorFlow and Keras -- 7.1.4 images -- 7.2 Convolutional neural networks -- 7.2.1 Using a pretrained model -- 7.2.2 Getting predictions -- 7.3 Internals of the model -- 7.3.1 Convolutional layers -- 7.3.2 Dense layers -- 7.4 Training the model -- 7.4.1 Transfer learning -- 7.4.2 Loading the data -- 7.4.3 Creating the model -- 7.4.4 Training the model -- 7.4.5 Adjusting the learning rate -- 7.4.6 Saving the model and checkpointing -- 7.4.7 Adding more layers -- 7.4.8 Regularization and dropout -- 7.4.9 Data augmentation -- 7.4.10 Training a larger model -- 7.5 Using the model -- 7.5.1 Loading the model -- 7.5.2 Evaluating the model -- 7.5.3 Getting the predictions -- 7.6 Next steps -- 7.6.1 Exercises -- 7.6.2 Other projects -- Summary -- Answers to exercises -- 8 Serverless deep learning -- 8.1 Serverless: AWS Lambda -- 8.1.1 TensorFlow Lite -- 8.1.2 Converting the model to TF Lite format -- 8.1.3 Preparing the images -- 8.1.4 Using the TensorFlow Lite model -- 8.1.5 Code for the lambda function -- 8.1.6 Preparing the Docker image -- 8.1.7 Pushing the image to AWS ECR -- 8.1.8 Creating the lambda function -- 8.1.9 Creating the API Gateway -- 8.2 Next steps -- 8.2.1 Exercises -- 8.2.2 Other projects -- Summary -- 9 Serving models with Kubernetes and Kubeflow -- 9.1 Kubernetes and Kubeflow -- 9.2 Serving models with TensorFlow Serving -- 9.2.1 Overview of the serving architecture -- 9.2.2 The saved_model format -- 9.2.3 Running TensorFlow Serving locally -- 9.2.4 Invoking the TF Serving model from Jupyter…”
    Libro electrónico
  18. 19278
    Publicado 2021
    Tabla de Contenidos: “…8.3.2.1 Example Target System Setup Using Engine and Body Control Modules -- 8.3.2.2 Fuzz Testing Setup Using Duplicate Engine and Body Control Modules -- 8.3.2.3 Fuzz Testing Setup Considerations -- 8.4 Chapter Summary -- References -- Chapter 9 Improving Fuzz Testing Coverage by Using Agent Instrumentation -- 9.1 Introduction to Agent Instrumentation -- 9.2 Problem Statement: Undetectable Vulnerabilities -- 9.2.1 Memory Leaks -- 9.2.2 Core Dumps and Zombie Processes -- 9.2.3 Considerations for Addressing Undetectable Vulnerabilities -- 9.3 Solution: Using Agents to Detect Undetectable Vulnerabilities -- 9.3.1 Overview of the Test Environment -- 9.3.2 Modes of Operation -- 9.3.2.1 Synchronous Mode -- 9.3.2.2 Asynchronous Mode -- 9.3.2.3 Hybrid Approach -- 9.3.3 Examples of Agents -- 9.3.3.1 AgentCoreDump -- 9.3.3.2 AgentLogTailer -- 9.3.3.3 AgentProcessMonitor -- 9.3.3.4 AgentPID -- 9.3.3.5 AgentAddressSanitizer -- 9.3.3.6 AgentValgrind -- 9.3.3.7 An Example config.json Configuration File -- 9.3.4 Example Results from Agent Instrumentation -- 9.3.4.1 Bluetooth Fuzz Testing -- 9.3.4.2 Wi‐Fi Fuzz Testing -- 9.3.4.3 MQTT Fuzz Testing -- 9.3.4.4 File Format Fuzz Testing -- 9.3.5 Applicability and Automation -- 9.4 Chapter Summary -- References -- Chapter 10 Automating File Fuzzing over USB for Automotive Systems -- 10.1 Need for File Format Fuzzing -- 10.2 Problem Statement: Manual Process for File Format Fuzzing -- 10.3 Solution: Emulated Filesystems to Automate File Format Fuzzing -- 10.3.1 System Architecture Overview -- 10.3.2 Phase One Implementation Example: Prepare Fuzzed Files -- 10.3.3 Phase Two Implementation Example: Automatically Emulate Filesystems -- 10.3.4 Automating User Input -- 10.3.5 Monitor for Exceptions -- 10.4 Chapter Summary -- References…”
    Libro electrónico
  19. 19279
    Publicado 2017
    Tabla de Contenidos: “…4.2.2 Liu et al. [48] -- 4.2.3 Zhang et al. [43] -- 4.2.4 Comparative overview -- 5 GPU Solutions for Sequence-Profile Comparison -- 5.1 GPU Solutions Using the Viterbi Algorithm -- 5.1.1 Horn et al. [32] -- 5.1.2 Du et al. [44] -- 5.1.3 Walters et al. [33] -- 5.1.4 Yao et al. [34] -- 5.1.5 Ganesan et al. [49] -- 5.1.6 Ferraz and Moreano [36] -- 5.2 GPU Solutions Using the MSV Algorithm -- 5.2.1 Li et al. [35] -- 5.2.2 Cheng and Butler [37] -- 5.2.3 Araújo Neto and Moreano [50] -- 5.3 Comparative Overview -- 6 Conclusion and Perspectives -- References -- Chapter 7: Graph algorithms on GPUs -- 1 Graph representation for GPUs -- 1.1 Adjacency Matrices -- 1.2 Adjacency Lists -- 1.3 Edge Lists -- 2 Graph traversal algorithms: the breadth first search (BFS) -- 2.1 The Frontier-Based Parallel Implementation of BFS -- 2.2 BFS-4K -- 3 The single-source shortest path (SSSP) problem -- 3.1 The SSSP Implementations for GPUs -- 3.2 H-BF: An Efficient Implementation of the Bellman-Ford Algorithm -- 4 The APSP problem -- 4.1 The APSP Implementations for GPUs -- 5 Load Balancing and Memory Accesses: Issuesand Management Techniques -- 5.1 Static Mapping Techniques -- 5.1.1 Work-items to threads -- 5.1.2 Virtual warps -- 5.2 Semidynamic Mapping Techniques -- 5.2.1 Dynamic virtual warps + dynamic parallelism -- 5.2.2 CTA + warp + scan -- 5.3 Dynamic Mapping Techniques -- 5.3.1 Direct search -- 5.3.2 Local warp search -- 5.3.3 Block search -- 5.3.4 Two-phase search -- 5.4 The Multiphase Search Technique -- 5.5 Coalesced Expansion -- 5.6 Iterated Searches -- References -- Chapter 8: GPU alignment of two and three sequences -- 1 Introduction -- 1.1 Pairwise alignment -- 1.2 Alignment of Three Sequences -- 2 GPU architecture -- 3 Pairwise alignment -- 3.1 Smith-Waterman Algorithm -- 3.2 Computing the Score of the Best Local Alignment…”
    Libro electrónico
  20. 19280
    Publicado 2018
    Tabla de Contenidos: “…AJAX Technology (Asynchrony) -- 10.1. Architecture for client-server data exchange -- 10.1.1. …”
    Libro electrónico