Mostrando 1,641 - 1,649 Resultados de 1,649 Para Buscar '".py"', tiempo de consulta: 0.05s Limitar resultados
  1. 1641
    Publicado 2023
    “…: 2.40-what-is-colab.mp4 Using Bard to enhance notebook development: 2.41-using-bard-to-enhance-productivity.mp4 Exploring Life Expectency in a Notebook: 2.42-life-expectancy-eda.mp4 Load a DataFrame with sensitive data: 2.43-Load-a-DataFrame-with-sensitive-information.mp4 Using MLFlow with Databricks Notebooks: 2.44-mlops-mlflow-tracking.mp4 End to End ML with MLFlow and Databricks: 2.45-end-to-end-ml-with-mlflow-and-databricks.mp4 Comparing DataFrame Libraries between Rust and Python: 2.46-comparing-dataframe-libs-rust-python.mp4 Lesson 3: Data Engineering Libraries and Tools with Rust Parquet file writing and reading with Rust: 2.50-parquet-read-write-rust.mp4 Arrow & Parquet in Rust: 2.51-arrow-parquet-rust.mp4 Serverless functions with Rust and AWS Lambda: 2.52-serverless-rust-aws-lambda.mp4 Polars library overview: 2.53-polars-library-overview.mp4 Building RESTful APIs with Rocket: 2.54-building-restful-apis-rocket.mp4 Utilizing Async Rust in Web Development: 2.55-utilizing-async-rust-web-development.mp4 Applying Data Cleaning Techniques with Rust: 2.56-applying-data-cleaning-rust.mp4 Deploying Rust Applications in a Kubernetes Environment: 2.57-deploying-rust-apps-kubernetes.mp4 Section 4: Designing Data Processing Systems in Rust Lesson 1: Getting Started with Rust Data Pipelines (Including ETL) Jack and the Beanstalk Data Pipelines: 4.1-jack-beanstalk-building-data-pipelines.mp4 Open Source Data Engineering - Pros and Cons: 4.2-open-source-de-pro-con.mp4 Core Components of Data Engineering Pipelines: 4.3-core-components-data-engineering-pipelines.mp4 Rust AWS Step Functions Pipeline: 4.4-rust-aws-step-functions.mp4 Rust AWS Lambda Async S3 Size Calculator: 4.5-rust-async-s3-size-calculator-lambda.mp4 What is Distroless: 4.6-what-is-distroless.mp4 Demo Deploying Rust Microservices on GCP: 4.7-demo-build-deploy-rust-microservice-cloud-run.mp4 Lesson 2: Using Rust and Python for LLMs, ONNX, Hugging Face, and PyTorch Pipelines Introduction to Hugging Face Hub: 4.10-intro-hugging-face-hub.mp4 Rust PyTorch Pre-trained Model Ecosystem: 4.11-rust-pytorch-pretrained-models-ecosystem.mp4 Rust GPU Hugging Face Translator: 4.12-rust-gpu-hugging-face-translator.mp4 Rust PyTorch High-Performance Options: 4.13-high-performance-pytorch-rust-demo.mp4 Rust CUDA PyTorch Stress Test: 4.14-building-cuda-enabled-stress-test-with-rust-pytorch.mp4 EFS ONNX Rust Inference with AWS Lambda: 4.15-efs-onnx-lambda-rust-inference-mlops.mp4 Theory behind model fine-tuning: 4.16-intro-fine-tuning-theory.mp4 Doing Fine Tuning: 4.17-doing-fine-tuning.mp4 Lesson 3: Building SQL Solutions with Rust, Generative AI and Cloud Selecting the correct database on GCP: 4.20-gcp-optimize-database-solution.mp4 Rust SQLite Hugging Face Zero Shot Classifier: 4.21-rust-sqlite-hugging-face-zero-shot-classifier-demo.mp4 Prompt Engineering for BigQuery: 4.22-big-query-prompt-engineering-v3.mp4 Big Query to Colab Pipeline: 4.23-bq-colab-pipeline-v2.mp4 Exploring Data with Big Query: 4.24-exploring-data-google-bigquery-v2.mp4 Using Public Datasets for Data Science: 4.25-using-public-datasets.mp4 Querying Log files with BigQuery: 4.26-demo-big-query-log-query.mp4 There is no one size database: 4.27-one-size-database.mp4 Course Conclusion: 4.28-conclusion.mp4 Learning Objectives By the end of this Course, you will be able to: Leverage Rust's robust data structures and collections for efficient data manipulation. …”
    Video
  2. 1642
    Publicado 2023
    “…What You Will Learn Learn the basics of machine learning and neural networks Understand the architecture of neural networks Learn the basics of training a DNN using the Gradient Descent algorithm Learn how to implement a complete DNN using NumPy Learn to create a complete structure for DNN from scratch using Python Work on a project using deep learning for the IRIS dataset Audience This course is designed for anyone who is interested in data science or interested in taking their data-speak to a higher level. …”
    Video
  3. 1643
    Publicado 2020
    “…By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance.What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek s high-quality trades and "es dataWho this book is forIf you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. …”
    Libro electrónico
  4. 1644
    Publicado 2023
    “…The prerequisites for the course include a decent understanding of Python and data science libraries (NumPy, Matplotlib, and Pandas), basic knowledge of finance (stock prices, logs, and cumulative returns), and foundational knowledge in Python, finance, and statistics. …”
    Video
  5. 1645
    Publicado 2023
    “…In his free time, Luke writes articles for his blog--PyPlane. He is associated with "Django Ninjas"--a web framework for building APIs with Django and Python 3.6+ type hints. …”
    Video
  6. 1646
    Publicado 2024
    “…What you will learn Build solutions with open-source offerings on Google Cloud, such as TensorFlow, PyTorch, and Spark Source, understand, and prepare data for ML workloads Build, train, and deploy ML models on Google Cloud Create an effective MLOps strategy and implement MLOps workloads on Google Cloud Discover common challenges in typical AI/ML projects and get solutions from experts Explore vector databases and their importance in Generative AI applications Uncover new Gen AI patterns such as Retrieval Augmented Generation (RAG), agents, and agentic workflows Who this book is for This book is for aspiring solutions architects looking to design and implement AI/ML solutions on Google Cloud. …”
    Libro electrónico
  7. 1647
    Publicado 2023
    “…Examples in Python and NumPy. About the Author David Sweet has worked as a quantitative trader at GETCO and a machine learning engineer at Instagram. …”
    Video
  8. 1648
    Publicado 2023
    “…Examples in Python and NumPy. About the Author David Sweet has worked as a quantitative trader at GETCO and a machine learning engineer at Instagram. …”
    Grabación no musical
  9. 1649
    Publicado 2023
    “…Miembro del Centro de Investigación en Derecho de la Economía Social y de la Empresa Cooperativa de la Universidad de Almería (CIDES), así como del grupo de investigación de EESCOOP de la Universidad Complutense de Madrid y del Proyecto de IDi de generación de conocimiento frontera del Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020), titulado "La reformulación de los principios cooperativos y su adaptación para satisfacer las actuales demandas sociales, económicas y medioambientales" (PY20_01278, IUSCOOP), en el marco del cual se ha realizado la presente monografía…”
    Libro electrónico