Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
- Python (Computer program language) 400
- Machine learning 162
- Society & social sciences 162
- Educación pedagogía 93
- Data mining 82
- Artificial intelligence 76
- Historia 50
- Humanities 50
- Computer programming 47
- Development 45
- Application software 44
- Historia / General 43
- Data processing 42
- Big data 39
- Neural networks (Computer science) 39
- Python 37
- Ciencias Políticas / General 33
- Natural language processing (Computer science) 33
- Computer programs 29
- Economics, finance, business & management 28
- Programming languages (Electronic computers) 25
- Cloud computing 22
- Deep learning (Machine learning) 22
- Open source software 22
- Mathematics 20
- Artificial Intelligence 19
- Electronic data processing 17
- Health & personal development 17
- Negocios y Economía / Gerencia 17
- Programming 17
-
81
-
82Publicado 2018“…Let's learn how to write Apache Spark Streaming programs with PySpark Streaming to process big data sources today!…”
-
83Publicado 2016Tabla de Contenidos: “…-- Conda environment management -- Managing Python -- Package management -- Setting up a database -- Installing MySQL -- MySQL connectors -- Creating a database -- Summary -- Chapter 2: Diving into NumPY -- NumPy arrays -- Special numeric values -- Creating NumPy arrays -- Creating ndarray -- Summary -- Chapter 3: Operations on NumPy Arrays -- Selecting elements explicitly -- Slicing arrays with colons -- Advanced indexing -- Expanding arrays -- Arithmetic and linear algebra with arrays -- Arithmetic with two equal-shaped arrays -- Broadcasting -- Linear algebra -- Employing array methods and functions -- Array methods -- Vectorization with ufuncs -- Custom ufuncs -- Summary -- Chapter 4: pandas are Fun! …”
Libro electrónico -
84Publicado 2023“…Advanced analytics with PySpark. Polish…”
Libro electrónico -
85Publicado 2020“…Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. …”
Libro electrónico -
86Publicado 2019“…PyTorch for deep learning and computer vision…”
-
87Publicado 2020Tabla de Contenidos: “…Intro -- Inhalt -- Einführung -- Teil I: PyTorch und neuronale Netze -- Kapitel 1: Grundlagen von PyTorch -- Google Colab -- PyTorch-Tensoren -- Automatische Gradienten mit PyTorch -- Berechnungsgraphen -- Lernziele -- Kapitel 2: Erstes neuronales Netz mit PyTorch -- Das MNIST-Bilddatensatz -- Die MNIST-Daten abrufen -- Ein Blick auf die Daten -- Ein einfaches neuronales Netz -- Das Training visualisieren -- Die Klasse für den MNIST-Datensatz -- Unsere Klassifizierer trainieren -- Das neuronale Netz abfragen -- Die Performance des Klassifizierers einfach ermitteln -- Kapitel 3: Verfeinerungen -- Verlustfunktion -- Aktivierungsfunktion -- Optimierungsmethode -- Normalisierung -- Kombinierte Verfeinerungen -- Lernziele -- Kapitel 4: Grundlagen von CUDA -- NumPy vs. …”
Libro electrónico -
88Publicado 2020“…Build better PyTorch models with TensorBoard visualization About This Video Learn everything you need to know to start using TensorBoard in PyTorch with practical examples in Machine Learning, Image Classification, and Natural Language Processing (NLP) Launch TensorBoard from any developer environment, including Jupyter notebooks and Google Colab Visualize and optimize your PyTorch models using techniques such as model graphs, training curves, image data, text embeddings, and many more In Detail TensorBoard is a visualization library for TensorFlow that plots training runs, tensors, and graphs. …”
-
89Publicado 2018“…This video will serve as an introduction to PyTorch, a dynamic, deep learning framework in Python. …”
-
90Publicado 2020“…This course starts by introducing you to PySpark's potential for performing effective analyses of large datasets. …”
-
91Publicado 2019“…Deep learning with PyTorch. Chinese…”
Libro electrónico -
92Publicado 2024“…Deep learning is revolutionizing the field of artificial intelligence, enabling machines to learn and make decisions like humans. PyTorch, a powerful and flexible deep learning framework, has emerged as the preferred tool for building and training neural networks. …”
Vídeo online -
93
-
94
-
95
-
96Publicado 2020“…Explanation of distributed gradient descent with an algorithm Horovod using multivariate linear regression in PyTorch and Python…”
Video -
97
-
98por Ayyadevara, V. KishoreTabla de Contenidos: “…Cover -- Copyright -- Contributors -- Table of Contents -- Preface -- Section 1: Fundamentals of Deep Learning for Computer Vision -- Chapter 1: Artificial Neural Network Fundamentals -- Comparing AI and traditional machine learning -- Learning about the ANN building blocks -- Implementing feedforward propagation -- Calculating the hidden layer unit values -- Applying the activation function -- Calculating the output layer values -- Calculating loss values -- Calculating loss during continuous variable prediction -- Calculating loss during categorical variable prediction -- Feedforward propagation in code -- Activation functions in code -- Loss functions in code -- Implementing backpropagation -- Gradient descent in code -- Implementing backpropagation using the chain rule -- Putting feedforward propagation and backpropagation together -- Understanding the impact of the learning rate -- Learning rate of 0.01 -- Learning rate of 0.1 -- Learning rate of 1 -- Summarizing the training process of a neural network -- Summary -- Questions -- Chapter 2: PyTorch Fundamentals -- Installing PyTorch -- PyTorch tensors -- Initializing a tensor -- Operations on tensors -- Auto gradients of tensor objects -- Advantages of PyTorch's tensors over NumPy's ndarrays -- Building a neural network using PyTorch -- Dataset, DataLoader, and batch size -- Predicting on new data points -- Implementing a custom loss function -- Fetching the values of intermediate layers -- Using a sequential method to build a neural network -- Saving and loading a PyTorch model -- Using state_dict -- Saving -- Loading -- Summary -- Questions -- Chapter 3: Building a Deep Neural Network with PyTorch -- Representing an image -- Converting images into structured arrays and scalars -- Creating a structured array for colored images -- Why leverage neural networks for image analysis?…”
Publicado 2023
Libro electrónico -
99Publicado 2018“…Elegant SciPy. Chinese…”
Libro electrónico -
100