Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
- Python (Computer program language) 399
- Machine learning 162
- Society & social sciences 162
- Educación pedagogía 93
- Data mining 80
- Artificial intelligence 76
- Historia 51
- Humanities 50
- Computer programming 47
- Development 45
- Application software 44
- Historia / General 43
- Data processing 42
- Big data 39
- Neural networks (Computer science) 39
- Python 37
- Ciencias Políticas / General 33
- Natural language processing (Computer science) 33
- Computer programs 29
- Economics, finance, business & management 28
- Programming languages (Electronic computers) 25
- Cloud computing 22
- Deep learning (Machine learning) 22
- Open source software 22
- Mathematics 20
- Artificial Intelligence 19
- Electronic data processing 17
- Health & personal development 17
- Negocios y Economía / Gerencia 17
- Programming 17
-
641
-
642
-
643
-
644Publicado 2020“…Get a better grasp of NumPy, Cython, and profilers Learn how Python abstracts the underlying computer architecture Use profiling to find bottlenecks in CPU time and memory usage Write efficient programs by choosing appropriate data structures Speed up matrix and vector computations Use tools to compile Python down to machine code Manage multiple I/O and computational operations concurrently Convert multiprocessing code to run on local or remote clusters Deploy code faster using tools like Docker…”
Libro electrónico -
645Publicado 2020“…You will use all the modern libraries from the Python ecosystem – including NumPy and Keras – to extract features from varied complexities of data. …”
Libro electrónico -
646Publicado 2016“…Gradually, you'll move on to review statistical inference using Python, Pandas, and SciPy. After that, we'll focus on performing regression using computational tools and you'll get to understand the problem of identifying clusters in data in an algorithmic way. …”
Libro electrónico -
647Publicado 2021“…There will be an introductory chapter covering basic concepts and terminology, and one chapter each on NumPy(the scientific computation library), Pandas (the data wrangling library) and visualization libraries like Matplotlib and Seaborn. …”
Libro electrónico -
648Publicado 2021“…Set up a proper Python environment for algorithmic trading Learn how to retrieve financial data from public and proprietary data sources Explore vectorization for financial analytics with NumPy and pandas Master vectorized backtesting of different algorithmic trading strategies Generate market predictions by using machine learning and deep learning Tackle real-time processing of streaming data with socket programming tools Implement automated algorithmic trading strategies with the OANDA and FXCM platforms…”
Libro electrónico -
649Publicado 2021“…You will learn how to build logistic regression models in scikit-learn and PySpark, and you will go through the process of hyperparameter tuning with a validation data set. …”
Libro electrónico -
650por Rincon Soto, Carlos AugustoTabla de Contenidos: “…Costos para las PyME; Página legal; Tabla de contenido; Agradecimientos; Introducción; Módulo 1; La importancia de lainformación financiera; Ejemplo. …”
Publicado 2011
Biblioteca Universitat Ramon Llull (Otras Fuentes: Biblioteca de la Universidad Pontificia de Salamanca, Universidad Loyola - Universidad Loyola Granada)Libro electrónico -
651Publicado 2021Tabla de Contenidos: “…Identifying potential microservices -- Code complexity and maintenance -- Metrics and Monitoring -- Logging -- Splitting a Monolith -- Feature Flags -- Refactoring Jeeves -- Workflow -- Summary -- Chapter 6: Interacting with Other Services -- Calling other web resources -- Finding out where to go -- Environment variables -- Service discovery -- Transferring data -- HTTP cache headers -- GZIP compression -- Protocol Buffers -- MessagePack -- Putting it together -- Asynchronous messages -- Message queue reliability -- Basic queues -- Topic exchanges and queues -- Publish/subscribe -- Putting it together -- Testing -- Using OpenAPI -- Summary -- Chapter 7: Securing Your Services -- The OAuth2 protocol -- X.509 certificate-based authentication -- Token-based authentication -- The JWT standard -- PyJWT -- Using a certificate with JWT -- The TokenDealer microservice -- The OAuth implementation -- Using TokenDealer -- Securing your code -- Limiting your application scope -- Untrusted incoming data -- Redirecting and trusting queries -- Sanitizing input data -- Using Bandit linter -- Dependencies -- Web application firewall -- OpenResty: Lua and nginx -- Rate and concurrency limiting -- Other OpenResty features -- Summary -- Chapter 8: Making a Dashboard -- Building a ReactJS dashboard -- The JSX syntax -- React components -- Pre-processing JSX -- ReactJS and Quart -- Cross-origin resource sharing -- Authentication and authorization -- A note about Micro Frontends -- Getting the Slack token -- JavaScript authentication -- Summary -- Chapter 9: Packaging and Running Python -- The packaging toolchain -- A few definitions -- Packaging -- The setup.py file -- The requirements.txt file -- The MANIFEST.in file -- Versioning -- Releasing -- Distributing -- Running all microservices -- Process management -- Summary -- Chapter 10: Deploying on AWS -- What is Docker?…”
Libro electrónico -
652Publicado 2021Tabla de Contenidos: “…Introduction to Python -- B.1 Variables -- B.1.1 Control flow -- B.1.2 Collections -- B.1.3 Code reusability -- B.1.4 Installing libraries -- B.1.5 Python programs -- Appendix C. Introduction to NumPy -- C.1 NumPy -- C.1.1 NumPy arrays -- C.1.2 Two-dimensional NumPy arrays -- C.1.3 Randomly generated arrays -- C.2 NumPy operations -- C.2.1 Element-wise operations -- C.2.2 Summarizing operations -- C.2.3 Sorting -- C.2.4 Reshaping and combining -- C.2.5 Slicing and filtering…”
Libro electrónico -
653por Mueller, John PaulTabla de Contenidos: “…-- Grasping Python's Core Philosophy -- Contributing to data science -- Discovering present and future development goals -- Working with Python -- Getting a taste of the language -- Understanding the need for indentation -- Working at the command line or in the IDE -- Performing Rapid Prototyping and Experimentation -- Considering Speed of Execution -- Visualizing Power -- Using the Python Ecosystem for Data Science -- Accessing scientific tools using SciPy -- Performing fundamental scientific computing using NumPy -- Performing data analysis using pandas -- Implementing machine learning using Scikit-learn -- Going for deep learning with Keras and TensorFlow -- Plotting the data using matplotlib -- Creating graphs with NetworkX -- Parsing HTML documents using Beautiful Soup -- Chapter 3 Setting Up Python for Data Science…”
Publicado 2019
Libro electrónico -
654
-
655
-
656
-
657
-
658
-
659
-
660