Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
- Python (Computer program language) 399
- Machine learning 162
- Society & social sciences 162
- Educación pedagogía 93
- Data mining 80
- Artificial intelligence 76
- Historia 51
- Humanities 50
- Computer programming 47
- Development 45
- Application software 44
- Historia / General 43
- Data processing 42
- Big data 39
- Neural networks (Computer science) 39
- Python 37
- Ciencias Políticas / General 33
- Natural language processing (Computer science) 33
- Computer programs 29
- Economics, finance, business & management 28
- Programming languages (Electronic computers) 25
- Cloud computing 22
- Deep learning (Machine learning) 22
- Open source software 22
- Mathematics 20
- Artificial Intelligence 19
- Electronic data processing 17
- Health & personal development 17
- Negocios y Economía / Gerencia 17
- Programming 17
-
361por Wade, CoreyTabla de Contenidos: “…Table of Contents Python Fundamentals – Math, Strings, Conditionals, and Loops Python Data Structures Executing Python – Programs, Algorithms, and Functions Extending Python, Files, Errors, and Graphs Constructing Python – Classes and Methods The Standard Library Becoming Pythonic Software Development Practical Python - Advance Topics Data Analytics with pandas and NumPy Machine Learning Deep Learning with Python New Features in Python…”
Publicado 2022
Libro electrónico -
362Publicado 2017Tabla de Contenidos: “…Deploying Python Applications -- Deployability -- Factors affecting Deployability -- Tiers of software deployment architecture -- Software deployment in Python -- Packaging Python code -- Pip -- Virtualenv -- Virtualenv and pip -- Relocatable virtual environments -- PyPI -- Packaging and submission of an application -- The __init__.py files -- The setup.py file -- Installing the package -- Submitting the package to PyPI -- PyPA -- Remote deployments using Fabric -- Remote deployments using Ansible -- Managing remote daemons using Supervisor -- Deployment - patterns and best practices -- Summary -- 10. …”
Libro electrónico -
363por Caracciolo, NadiaTabla de Contenidos: “…; Por qué algunas PyMES no suelen invertir en comunicación; Planificación estratégica de la comunicación para PyMes; Una regla básica de la comunicación: no acosar a la prensa; Capítulo 4; Crisis en la actualidad…”
Publicado 2010
Biblioteca Universitat Ramon Llull (Otras Fuentes: Universidad Loyola - Universidad Loyola Granada, Biblioteca de la Universidad Pontificia de Salamanca)Libro electrónico -
364
-
365
-
366Publicado 2022Tabla de Contenidos: “…Table of Contents Understanding the AI/ML Landscape Analyzing Open Source Software Using Anaconda Distribution to Manage Packages Working with Jupyter Notebooks and NumPy Cleaning and Visualizing Data Overcoming Bias in AI/ML Choosing the Best AI Algorithm Dealing with Common Data Problems Building a Regression Model with scikit-learn Explainable AI - Using LIME and SHAP Tuning Hyperparameters and Versioning Your Model…”
Libro electrónico -
367por Aung-Thwin, MichaelTabla de Contenidos: “…The Py millennium -- Rmaññadesa : an imagined polity -- Thatôn (Sudhuim) : an imagined center -- The conquest of Thatôn : an imagined event -- The conquest of Thatôn as allegory -- The Mon paradigm and the origins of the Burma script -- The place of written Burmese and Mon in Burma's early history -- The Mon paradigm and the evolution of the Pagán temple -- The Mon paradigm and the Kyanzittha legend -- The Mon paradigm and the myth of the "down-trodden Talaing" -- Colonial officials and colonial scholars : the institutionalization of the Mon paradigm…”
Publicado 2005
Libro electrónico -
368Publicado 2023Tabla de Contenidos: “…Introduction to geospatial analytics -- Essential facilities for spatial analysis -- QGIS: exploring PyQGIS and native algorithms for spatial analytics -- Geospatial analytics in the cloud: Google Earth Engine and other tools -- OpenStreetMap: accessing geospatial data with OSMnx -- The ArcGIS Python API -- GeoPandas and spatial statistics -- Data cleaning -- Exploring the Geospatial Data Abstraction Library (GDAL) -- Using Python to measure climate data…”
Libro electrónico -
369Publicado 2016“…To tap into the power of Python's open data science stack—including NumPy, Pandas, Matplotlib, Scikit-learn, and other tools—you first need to understand the syntax, semantics, and patterns of the Python language. …”
Libro electrónico -
370Publicado 2018“…In this updated second edition, you will: Work with NumPy arrays and SciPy methods, including basic signal processing and Fast Fourier Transform Study abstract models of complex physical systems, including power laws, fractals and pink noise, and Turing machines Get Jupyter notebooks filled with starter code and solutions to help you re-implement and extend original experiments in complexity; and models of computation like Turmites, Turing machines, and cellular automata Explore the philosophy of science, including the nature of scientific laws, theory choice, and realism and instrumentalism Ideal as a text for a course on computational modeling in Python, Think Complexity also helps self-learners gain valuable experience with topics and ideas they might not encounter otherwise…”
Libro electrónico -
371Publicado 2019“… Create distributed applications with clever design patterns to solve complex problems <h4>Key Features</h4> Set up and run distributed algorithms on a cluster using Dask and PySpark Master skills to accurately implement concurrency in your code Gain practical experience of Python design patterns with real-world examples <h4>Book Description</h4> This Learning Path shows you how to leverage the power of both native and third-party Python libraries for building robust and responsive applications. …”
Libro electrónico -
372Publicado 2023“…This comprehensive course covers all major serverless components on GCP, providing in-depth implementation of machine learning pipelines using Vertex AI with Kubeflow, and Serverless PySpark using Dataproc, App Engine, and Cloud Run. …”
Video -
373Publicado 2018“…Książka przedstawia wykorzystanie testów z użyciem bibliotek naukowych NumPy, Pandas, Scikit-Learn oraz SciPy dla języka Python, ilustrując je licznymi wykresami oraz przykładami kodu. …”
Libro electrónico -
374Publicado 2023“…With this short but thorough resource, data scientists and Python programmers will learn how the Dask open source library for parallel computing provides APIs that make it easy to parallelize PyData libraries including NumPy, pandas, and scikit-learn. …”
Libro electrónico -
375Publicado 2020“…" Other Videos in This Category Deep Learning with PyTorch Deep Learning with PyTorch Luca Pietro Giovanni Antiga; Thomas Viehmann; Eli Stevens Federated Learning Federated Learning Qiang Yang; Yang Liu; Yong Cheng; Yan Kang; Tianjian Chen; Han Yu Compatibility Modeling Compatibility Modeling Xuemeng Song; Liqiang Nie; Yinglong Wang; Gary Marchionini Representation and Understanding Representation and Understanding Allan Collins; Daniel G Bobrow Uncertainty in Artificial Intelligence Uncertainty in Artificial Intelligence MKP There are many cases where developers on mobile write lower-level C++ code for their Android applications using the Android NDK, OpenCV and other technologies. …”
Vídeo online -
376Publicado 2021Tabla de Contenidos: “…Become a Game Developer with PyGame -- Chapter 21. Project: Space Shooters Game with PyGame -- Chapter 22. …”
Libro electrónico -
377Publicado 2019Tabla de Contenidos: “…Chapter 1: Introduction to pandas and Data Analysis ; Chapter 2: Installation of pandas and Supporting Software -- Section 2: Data Structures and I/O in pandas. Chapter 3: Using NumPy and Data Structures with pandas ; Chapter 4: I/Os of Different Data Formats with pandas -- Section 3: Mastering Different Data Operations in pandas. …”
Libro electrónico -
378por Johansson, Robert. author“…Numerical Python by Robert Johansson shows you how to leverage the numerical and mathematical capabilities in Python, its standard library, and the extensive ecosystem of computationally oriented Python libraries, including popular packages such as NumPy, SciPy, SymPy, Matplotlib, Pandas, and more, and how to apply these software tools in computational problem solving. …”
Publicado 2015
Libro electrónico -
379Publicado 2015Tabla de Contenidos: “…Installing Anaconda on WindowsEnsuring pandas is up to date; Running a small pandas sample in IPython; Starting the IPython Notebook server; Installing and running IPython Notebooks; Using Wakari for pandas; Summary; Chapter 3: NumPy for pandas; Installing and importing NumPy; Benefits and characteristics of NumPy arrays; Creating NumPy arrays and performing basic array operations; Selecting array elements; Logical operations on arrays; Slicing arrays; Reshaping arrays; Combining arrays; Splitting arrays; Useful numerical methods of NumPy arrays; Summary; Chapter 4: The pandas Series Object…”
Libro electrónico -
380por Tagliazucchi, Mario Eugenio“…Los polielectrolitos redox empleados en esta Tesis son una poli(alilamina) modificada con el complejo Os(bpy)2pyCl2+/+ (PAH-Os) y nuevos polímeros conteniendo el complejo [Os(CN)5py]3-/2- . …”
Publicado 2009
Universidad Loyola - Universidad Loyola Granada (Otras Fuentes: Biblioteca de la Universidad Pontificia de Salamanca)Enlace del recurso
Tesis