Low-Cost physics experiments using new technologies

"This book presents a set of low-cost physics experiments, making use of the new technologies available (data collection and analysis systems by computers, Internet, video, commercial electronics, smartphones, etc.), while highlighting the methodological aspects of physics and science in genera...

Descripción completa

Detalles Bibliográficos
Otros Autores: Gil, Salvador, autor (autor)
Formato: Libro
Idioma:Inglés
Publicado: New Jersey : World Scientific [2024]
Materias:
Ver en Universidad de Navarra:https://unika.unav.edu/discovery/fulldisplay?docid=alma991011588383608016&context=L&vid=34UNAV_INST:VU1&search_scope=34UNAV_TODO&tab=34UNAV_TODO&lang=es
Tabla de Contenidos:
  • Intro
  • Contents
  • Preface
  • Acknowledgments
  • Experimental Projects
  • Module I Experiments in Sciences
  • Chapter 1. Role of Laboratory in Science Learning
  • 1.1 Why do we conduct experiments?
  • 1.2 Preparing laboratory reports
  • 1.3 Safety in the laboratory
  • References
  • Chapter 2. Introduction to Graphical Analysis
  • 2.1 Graphical representation of results
  • 2.2 Choice of variables
  • 2.2.1 Linear law
  • 2.2.2 Power law
  • 2.3 Exponential relationship
  • 2.4 Variable transformation - Pseudovariables
  • 2.5 Tips for generating charts
  • 2.6 Summary of important concepts
  • 2.7 Exercises and problems
  • References
  • Chapter 3. Introduction to Graphic Analysis
  • 3.1 Scaling laws
  • 3.2 Allometry of plants and animals
  • 3.2.1 Project 1. Mass-length ratio of the leaves of a plant
  • 3.2.2 Project 2. Experiments with real plants
  • 3.3 Conservation laws in nature
  • 3.3.1 Project 3. Search for conservation laws in nature
  • 3.3.2 Project 4. Importance of dimensions in biology
  • 3.4 Zipf 's law and Benford's law
  • 3.4.1 Project 5. Word frequency in languages: Zipf's law
  • 3.4.2 Project 6. Why is the first page of a manual or table in a library generally the most worn? Newcomb-Benford's law
  • References
  • Chapter 4. Error Theory: Uncertainty of Measurement Results
  • 4.1 Uncertainty of Measurement Results
  • 4.2 Sensitivity, precision, and accuracy
  • 4.3 Source of errors
  • 4.3.1 Errors introduced by the instrument
  • 4.4 Classification of errors
  • 4.5 Significant figures
  • 4.6 Determination of measurement errors
  • 4.7 Nonius, vernier, or caliper
  • 4.8 Summary of important concepts
  • 4.9 Exercises and problems
  • References
  • Chapter 5. Statistical Data Processing
  • 5.1 Samples and populations
  • 5.2 Histograms and statistical distribution
  • 5.3 Position parameters of a distribution.
  • 5.4 Statistical parameters of dispersion - Standard deviation
  • 5.5 Normal or Gaussian distribution
  • 5.6 Quantity measured N times
  • 5.7 Optimal number of measurements
  • 5.8 Ten practical steps - Decalogue
  • 5.9 ♣ Combination of independent measurements
  • 5.10 Discrepancy
  • 5.11 Summary of important concepts
  • 5.12 Exercises and problems
  • 5.13 Histograms
  • 5.13.1 Goal
  • 5.13.2 Introduction
  • 5.13.3 Project 7. Construction of histograms and study of empiric distributions
  • 5.13.4 Project 8. Histogram obtained by hand
  • References
  • Chapter 6. ♣ Indirect Measurements
  • 6.1 Error propagation
  • 6.2 Truncation of numbers
  • 6.3 Choosing the best equipment or tools
  • 6.4 ♣♣ Propagation of errors with correlated variables
  • 6.5 Summary of important concepts
  • 6.6 Exercises and problems
  • References
  • Chapter 7. ♣ Least Squares Method and Linear Regression
  • 7.1 Least squares method - Linear regression
  • 7.2 Correlation and causality
  • 7.3 Uncertainty in the adjustment parameters
  • 7.4 Occam's razor or criterion of parsimony
  • 7.5 Summary of important concepts
  • 7.6 Exercises and problems
  • References
  • Chapter 8. Density Measurement
  • 8.1 Archimedes' principle: Determination of densities
  • 8.1.1 Project 9. Archimedes' principle I - Falsifying a hypothesis
  • 8.1.2 Project 10. Archimedes' method to determine densities
  • 8.2 Journey to the interior of the Earth
  • 8.2.1 Project 11. Study of the density and internal composition of the Earth
  • 8.3 Summary of important concepts
  • References
  • Module II Experiments with Mechanical Systems
  • Chapter 9. Galileo's Experiments using New Technologies
  • 9.1 Introductory experiments in mechanics: Photogates
  • 9.1.1 Project 12. Discovering the laws of the pendulum - Dependence of the period as a function of the length of the pendulum
  • 9.2 Free fall experiment: Determination of g.
  • 9.2.1 Project 13. Study of free fall motion
  • 9.2.2 Project 14. Determination of g
  • 9.3 Precautions during analysis
  • 9.4 Evaluation questions
  • 9.4.1 Project 15. Energy conservation
  • 9.4.2 Exercise
  • 9.5 Annex A: Period of a simple pendulum
  • References
  • Chapter 10. The Digital Camera and the Smartphone as a Measuring Instrument
  • 10.1 The digital camera
  • 10.2 Geometric shapes formed by the shadow of a lamp
  • 10.2.1 Project 16. Study of the shadow of a lamp
  • 10.2.2 Project 17. Path of a water jet
  • 10.3 Viscous friction force of air
  • 10.3.1 Project 18. ♣♣ Using video to study the kinematics of a body - Viscous friction force in air
  • 10.3.2 Project 19. ♣♣ Study of projectile motion
  • 10.4 Annex A: Laminar and turbulent regimes
  • 10.5 Annex B: Falling motion in a fluid medium with friction proportional to v2
  • References
  • Chapter 11. Sound Recording as a Measuring Instrument
  • 11.1 Digital Sound recording
  • 11.1.1 Project 20. Determining the acceleration of gravity using audio signals
  • 11.2 Sound waves
  • 11.2.1 Project 21. Determining the speed of sound
  • References
  • Chapter 12. Measuring the Solar System from the Classroom
  • 12.1 The size of the Moon and the Earth
  • 12.1.1 Project 22. Determination of the size of the Moon and its distance from Earth - Aristarchus
  • 12.2 Estimation of the terrestrial radius
  • 12.2.1 Project 23. Earth's Radius
  • 12.3 Hipparchus method - Size of the Moon
  • 12.3.1 Project 24. Determination of the size of the Moon and its distance from Earth - Hipparchus
  • 12.4 Earth-Sun distance
  • 12.4.1 Project 25. Earth-Sun distance
  • 12.5 Distances to other planets I
  • 12.5.1 Project 26. Distance Venus-Sun and Mercury-Sun
  • 12.6 Distances to other planets II
  • 12.6.1 Project 27. Distance to other planets.
  • 12.6.2 Project 28. Applications to astronomy and astrophysics - Kepler's laws and Hubble's law
  • 12.6.3 Project 29. Expansion of the Universe and the Big Bang - How do we know this? When did it happen?
  • 12.7 Annex A: Path of a ray of light in the atmosphere
  • 12.8 Annex B: Periods of the Moon
  • References
  • Chapter 13. Elastic Systems - Hooke's Law
  • 13.1 Introduction to linear elastic systems
  • 13.1.1 Project 30. Elastic properties of a spring
  • 13.1.2 Project 31. Elastic properties of an elastic band
  • 13.1.3 Project 32. Series and parallel spring systems
  • 13.2 Nonlinear elastic systems
  • 13.2.1 Project 33. Nonlinear elastic system [2, 3]
  • References
  • Chapter 14. Newton's Laws and Friction Force
  • 14.1 Coulomb dry friction force
  • 14.1.1 Project 34. Determination of the static friction coefficient
  • 14.1.2 Project 35. Determination of the coefficient of kinetic friction
  • 14.2 Annex A: Study of the motion of the two-body system with dry friction
  • Summary of important concepts
  • References
  • Chapter 15. Harmonic Oscillators
  • 15.1 Oscillatory systems
  • 15.2 Free oscillations
  • 15.3 Damped oscillations
  • 15.3.1 Project 36. Study of the oscillating system - Free oscillations
  • 15.3.2 Project 37. Damped oscillations - Viscous friction
  • 15.3.3 Project 38. ♣♣ Damped oscillations - Turbulent friction
  • 15.4 Annex A: Friction forces dependent on the square of the velocity - Turbulent friction
  • 15.5 Annex A: Harmonic oscillator with turbulent friction force
  • References
  • Chapter 16. Pendulums
  • 16.1 Physical pendulums
  • 16.2 Period for small amplitudes
  • 16.2.1 Project 39. Study of an oscillating ring
  • 16.3 Counter-intuitive pendulum
  • 16.3.1 Preliminary exercises
  • 16.3.2 Project 40. Counter-intuitive pendulum
  • 16.4 Kater's reversible pendulum.
  • 16.4.1 Project 41. Possible construction of Kater's pendulum: measuring g
  • 16.4.2 Project 42. "Homemade" Kater's pendulum
  • 16.5 Pendulum with friction
  • 16.6 Pendulum with friction - Small amplitudes
  • 16.6.1 Project 43. Pendulum with viscous and sliding friction
  • 16.7 Annex A: Large amplitude pendulum - Period
  • References
  • Chapter 17. Cycloidal Pendulum - Brachistochrone and Tautochrone
  • 17.1 Cycloidal pendulum
  • 17.2 Involutes and evolutes
  • 17.3 Experimental setup of a generalized pendulum
  • 17.3.1 Project 44. Simple pendulum - Variation of the period with the amplitude
  • 17.3.2 Project 45. Cycloidal pendulum
  • 17.3.3 Project 46. Perturbed cycloidal pendulum - Anharmonic oscillations
  • 17.3.4 Project 47. Pendulum with semicubical evolute - Paradox of the race
  • References
  • Chapter 18. Forced Oscillations
  • 18.1 Forced oscillations - Resonance
  • 18.2 Experimental setups
  • 18.2.1 Project 48. Forced oscillations
  • References
  • Chapter 19. Hanging Chains
  • 19.1 Catenaries and parabolas
  • 19.2 Loaded and unloaded chains
  • 19.2.1 Project 49. Simple chain supported at its ends
  • 19.2.2 Project 50. Chain with loads
  • References
  • Chapter 20. Elastic Properties of Materials - Modulus of Rigidity
  • 20.1 Mechanical properties of materials
  • 20.1.1 Project 51. Measuring Young's modulus for copper or steel wires, etc. by the loading and unloading methods
  • 20.2 ♣ Beam deflection - Euler-Bernoulli theory
  • 20.2.1 ♣ Beam deflection
  • 20.2.2 Light cantilever supporting a weight
  • 20.2.3 Cantilever subjected to bending by its own weight
  • 20.3 ♣ Vibrations of a cantilever beam
  • 20.3.1 ♣ Vibrations of a cantilever beam
  • 20.3.2 ♣ Vibrations of a bar with both ends free
  • 20.3.3 Project 52. Measuring Young's modulus of bars by the static method - Beam deflection.