Understanding machine learning from theory to algorithms
"Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides an extensive theoretical account of the fundament...
Otros Autores: | , |
---|---|
Formato: | Libro |
Idioma: | Inglés |
Publicado: |
New York, NY :
Cambridge University Press
2018
|
Materias: | |
Ver en Universidad de Navarra: | https://unika.unav.edu/discovery/fulldisplay?docid=alma991011526527808016&context=L&vid=34UNAV_INST:VU1&search_scope=34UNAV_TODO&tab=34UNAV_TODO&lang=es |
Tabla de Contenidos:
- Machine generated contents note: 1. Introduction; Part I. Foundations: 2. A gentle start; 3. A formal learning model; 4. Learning via uniform convergence; 5. The bias-complexity tradeoff; 6. The VC-dimension; 7. Non-uniform learnability; 8. The runtime of learning; Part II. From Theory to Algorithms: 9. Linear predictors; 10. Boosting; 11. Model selection and validation; 12. Convex learning problems; 13. Regularization and stability; 14. Stochastic gradient descent; 15. Support vector machines; 16. Kernel methods; 17. Multiclass, ranking, and complex prediction problems; 18. Decision trees; 19. Nearest neighbor; 20. Neural networks; Part III. Additional Learning Models: 21. Online learning; 22. Clustering; 23. Dimensionality reduction; 24. Generative models; 25. Feature selection and generation; Part IV. Advanced Theory: 26. Rademacher complexities; 27. Covering numbers; 28. Proof of the fundamental theorem of learning theory; 29. Multiclass learnability; 30. Compression bounds; 31. PAC-Bayes; Appendix A. Technical lemmas; Appendix B. Measure concentration; Appendix C. Linear algebra