A biologist's guide to analysis of DNA microarray data

Detalles Bibliográficos
Autor principal: Knudsen, Steen (-)
Formato: Libro
Idioma:Inglés
Publicado: New York : Wiley-Interscience c2002.
Materias:
Acceso en línea:Descripción del editor
Índice
Información biográfica
Ver en Universidad de Navarra:https://unika.unav.edu/discovery/fulldisplay?docid=alma991008298219708016&context=L&vid=34UNAV_INST:VU1&search_scope=34UNAV_TODO&tab=34UNAV_TODO&lang=es
Tabla de Contenidos:
  • Machine generated contents note: Preface xi
  • Acknowledgments xiii
  • 1 Introduction I
  • 1.1 Hybridization 1
  • 1.2 Affymetrix GeneChip Technology 3
  • 1.3 Spotted Arrays 6
  • 1.4 Serial Analysis of Gene Expression (SAGE) 8
  • 1.5 Example: Affymetrix vs. Spotted Arrays 9
  • 1.6 Summary 11
  • 1.7 Further Reading 13
  • 2 Overview of Data Analysis 15
  • 3 Basic Data Analysis 17
  • 3.1 Absolute Measurements 17
  • 3.2 Scaling 18
  • 3.2.1 Example: Linear and Nonlinear Scaling 20
  • 3.3 Detection of Outliers 20
  • 3.4 Fold Change 21
  • 3.5 Significance 22
  • 3.5.1 Nonparametric Tests 24
  • 3.5.2 Correction for Multiple Testing 24
  • 3.5.3 Example I: t-Test and ANOVA 25
  • 3.5.4 Example II: Number of Replicates 26
  • 3.6 Summary 28
  • 3.7 Further Reading 29
  • 4 Visualization by Reduction of Dimensionality 33
  • 4.1 Principal Component Analysis 33
  • 4.2 Example 1: PCA on Small Data Matrix 35
  • 4.3 Example 2: PCA on Real Data 37
  • 4.4 Summary 37
  • 4.5 Further Reading 39
  • 5 Cluster Analysis 41
  • 5.1 Hierarchical Clustering 41
  • 5.2 K-means Clustering 43
  • 5.3 Self-Organizing Maps 44
  • 5.4 Distance Measures 45
  • 5.4.1 Example: Comparison of Distance Measures 47
  • 5.5 Normalization 49
  • 5.6 Visualization of Clusters 50
  • 5.6.1 Example: Visualization of Gene Clusters in
  • Bladder Cancer 50
  • 5.7 Summary 50
  • 5.8 Further Reading 52
  • 6 Beyond Cluster Analysis 55
  • 6.1 Function Prediction 55
  • 6.2 Discovery of Regulatory Elements in Promoter
  • Regions 56
  • 6.2.1 Example 1: Discovery of Proteasomal Element 57
  • 6.2.2 Example 2: Rediscovery of Mlu Cell Cycle
  • Box (MCB) 57
  • 6.3 Integration of data 58
  • 6.4 Summary 59
  • 6.5 Further Reading 59
  • 7 Reverse Engineering of Regulatory Networks 63
  • 7.1 The Time-Series Approach 63
  • 7.2 The Steady-State Approach 64
  • 7.3 Limitations of Network Modeling 65
  • 7.4 Example 1: Steady-State Model 65
  • 7.5 Example 2: Steady-State Model on Real Data 66
  • 7.6 Example 3: Steady-State Model on Real Data 68
  • 7.7 Example 4: Linear Time-Series Model 68
  • 7.8 Further Reading 71
  • 8 Molecular Classifiers 75
  • 8.1 Classification Schemes 76
  • 8.1.1 Nearest Neighbor 76
  • 8.1.2 Neural Networks 76
  • 8.1.3 Support Vector Machine 76
  • 8.2 Example I: Classification of Cancer Subtypes 77
  • 8.3 Example II: Classification of Cancer Subtypes 78
  • 8.4 Summary 79
  • 8.5 Further Reading 79
  • 9 Selection of Genes for Spotting on Arrays 81
  • 9.1 Gene Finding 82
  • 9.2 Selection of Regions Within Genes 82
  • 9.3 Selection of Primers for PCR 83
  • 9.4 Selection of Unique Oligomer Probes 83
  • 9.4.1 Example: Finding PCR Primers for Gene
  • AF105374 83
  • 9.5 Experimental Design 84
  • 9.6 Further Reading 84
  • 10 Limitations of Expression Analysis 87
  • 10.1 Relative VersusAbsoluteRNA Quantification 88
  • 10.2 Further Reading 88
  • 11 Genotyping Chips 91
  • 11.1 Example: NeuralNetworksfor GeneChipprediction 91
  • 11.2 Further Reading 93
  • 12 Software Issues and Data Formats 95
  • 12.1 Standardization Efforts 96
  • 12.2 Standard File Format 97
  • 12.2.1 Example: Small Scripts in Awk 97
  • 12.3 Software for Clustering 98
  • 12.3.1 Example: Clustering with ClustArray 99
  • 12.4 Software for Statistical Analysis 99
  • 12.4.1 Example: StatisticalAnalysis with R 99
  • 12.4.2 The affyR Software Package 103
  • 12.4.3 Commercial Statistics Packages 103
  • 12.5 Summary 103
  • 12.6 Further Reading 104
  • 13 Commercial Software Packages 105
  • 14 Bibliography 109
  • Index 123.