Handbook of quantitative methods for detecting cheating on tests

Detalles Bibliográficos
Otros Autores: Cizek, Gregory J., editor (editor), Wollack, James A., editor
Formato: Libro
Idioma:Inglés
Publicado: New York, NY ; Abingdon, Oxon : Routledge, Taylor & Francis Group 2017
Materias:
Ver en Universidad de Navarra:https://unika.unav.edu/discovery/fulldisplay?docid=alma991004795209708016&context=L&vid=34UNAV_INST:VU1&search_scope=34UNAV_TODO&tab=34UNAV_TODO&lang=es
Tabla de Contenidos:
  • Exploring Cheating on Tests : The Context, the Concern, and the Challenges / Gregory J. Cizek and James A. Wollack
  • Similarity, Answer Copying, and Aberrance : Understanding the Status Quo / Cengiz Zopluoglu
  • Detecting Potential Collusion among Individual Examinees using Similarity Analysis / Dennis D. Maynes
  • Identifying and Investigating Aberrant Responses Using Psychometrics-Based and Machine Learning-Based Approaches / Doyoung Kim, Ada Woo, and Phil Dickison
  • Detecting Preknowledge and Item Compromise : Understanding the Status Quo / Carol A. Eckerly
  • Detection of Test Collusion using Cluster Analysis / James A. Wollack
  • Detecting Candidate Pre-knowledge and Compromised Content using Differential Person and Item Functioning / Lisa O'Leary and Russell Smith
  • Identification of Item Preknowledge by the Methods of Information Theory and Combinatorial Optimization / Dmitry Belov
  • Using Response Time Data to Detect Compromised Items and/or People / Keith A. Boughton, Jessalyn Smith and Hao Ren
  • Detecting Erasures and Unusual Gain Scores : Understanding the Status Quo / Scott Bishop and Karla Egan
  • Detection of Test Tampering at the Group Level / James A. Wollack and Carol A. Eckerly
  • A Bayesian Hierarchical Linear Model for Detecting Aberrant Growth at the Group Level / William P. Skorupski, Joe Fitzpatrick and Karla Egan
  • Using Nonlinear Regression to Identify Unusual Performance Level Classification Rates / J. Michael Clark, William P. Skorupski and Stephen Murphy
  • Detecting Unexpected Changes in Pass Rates : A Comparison of Two Statistical Approaches / Matthew N. Gaertner and Yuanyuan Z. McBride
  • Security Vulnerabilities Facing Next Generation Accountability Testing / Joseph Martineau, Daniel Jurich, Jeffrey B. Hauger, and Kristen Huff
  • Establishing Baseline Data for Incidents of Misconduct in the NextGen Assessment Environment / Deborah J. Harris and Chi-Yu Huang
  • Visual Displays of Test Fraud Data / Brett P. Foley
  • The Case for Bayesian Methods when Investigating Test Fraud / William P. Skorupski and Howard Wainer
  • When Numbers Are Not Enough : Collection and Use of Collateral Evidence to Assess the Ethics and Professionalism of Examinees Suspected of Test Fraud / Marc J. Weinstein
  • What We Have Learned? / Lorin Mueller, Yu Zhang and Steve Ferrara
  • The Future of Quantitative Methods for Detecting Cheating : Conclusions, Cautions, and Recommendations / James A. Wollack and Gregory J. Cizek.