Algorithmic learning in a random world

"Algorithmic Learning in a Random World describes recent theoretical and experimental developments in building computable approximations to Kolmogorov's algorithmic notion of randomness. Based on these approximations, a new set of machine learning algorithms have been developed that can be...

Descripción completa

Detalles Bibliográficos
Otros Autores: Vovk, Vladimir, 1960- autor (autor), Gammerman, A. (Alexander), autor, Shafer, Glenn, 1946- autor
Formato: Libro
Idioma:Inglés
Publicado: New York : Springer [2005]
Materias:
Ver en Universidad de Navarra:https://unika.unav.edu/discovery/fulldisplay?docid=alma991004645519708016&context=L&vid=34UNAV_INST:VU1&search_scope=34UNAV_TODO&tab=34UNAV_TODO&lang=es
Tabla de Contenidos:
  • Counter Preface.- List of Principal results.- Introduction.- Conformal prediction.- Classification with conformal predictors.-Modifications of conformal predictors.- Probabilistic prediction I: impossibility results.- Probabilistic prediction II: Venn predictors.- Beyond exchangeability.- On-line compression modeling I: conformal prediction.- On-line compression modeling II: Venn prediction.- Perspectives and contrasts.- Appendix A: Probability theory.- Appendix B: Data sets.- Appendix C: FAQ.- Notation.- References.- Index