Mathematics for machine learning

"The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability, and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or...

Descripción completa

Detalles Bibliográficos
Autor principal: Deisenroth, Marc Peter (-)
Otros Autores: Faisal, A. Aldo, Ong, Cheng Soon
Formato: Libro
Idioma:Inglés
Publicado: Cambridge ; New York, NY : Cambridge University Press 2020
Materias:
Ver en Universidad de Navarra:https://unika.unav.edu/discovery/fulldisplay?docid=alma991002590999708016&context=L&vid=34UNAV_INST:VU1&search_scope=34UNAV_TODO&tab=34UNAV_TODO&lang=es
Tabla de Contenidos:
  • Introduction and motivation
  • Linear algebra
  • Analytic geometry
  • Matrix decompositions
  • Vector calculus
  • Probability and distribution
  • Continuous optimization
  • When models meet data
  • Linear regression
  • Dimensionality reduction with principal component analysis
  • Density estimation with Gaussian mixture models
  • Classification with support vector machines.