Data mining practical machine learning tools and techniques

Detalles Bibliográficos
Autor principal: Witten, Ian H. (-)
Otros Autores: Frank, Eibe
Formato: Libro
Idioma:Inglés
Publicado: Amsterdam [etc.] : Morgan Kaufman 2005.
Edición:2nd ed
Colección:Morgan Kaufmann series in data management systems.
Materias:
Ver en Universidad de Navarra:https://unika.unav.edu/discovery/fulldisplay?docid=alma991001377159708016&context=L&vid=34UNAV_INST:VU1&search_scope=34UNAV_TODO&tab=34UNAV_TODO&lang=es
Tabla de Contenidos:
  • Part I: Machine learning tools and techniques. 1. What’s it all about? 2. Input: Concepts, instances, attributes 3. Output: Knowledge representation 4. Algorithms: The basic methods 5. Credibility: Evaluating what’s been learned 6. Implementations: Real machine learning schemes 7. Transformations: Engineering the input and output 8. Moving on: Extensions and applications Part II: The Weka machine learning workbench . 9. Introduction to Weka 10. The Explorer 11. The Knowledge Flow interface 12. The Experimenter 13. The command-line interface 14. Embedded machine learning 15. Writing new learning schemes