New Type of sub-THz Oscillator and Amplifier Systems Based on Helical-Type Gyro-TWTs
This work presents the development of a new sub-THz source for the generation of trains of coherent high-power ultra-short pulses at 263 GHz via passive mode-locking of two coupled helical gyro-TWTs. For the first time, it is shown that the operation of such passive mode-locked helical gyro-TWTs in...
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Karlsruhe, Baden :
KIT Scientific Publishing
2023.
|
Colección: | Karlsruher Forschungsberichte aus dem Institut für Hochleistungsimpuls- und Mikrowellentechnik.
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009871134506719 |
Tabla de Contenidos:
- Foreword of the Editor i
- Zusammenfassung iii
- Abstract v
- Abbreviations xiii
- List of Symbols xvii
- 1 Introduction 1
- 1.1 Aims and Objectives 1
- 1.2 State of the Art 4
- 1.3 Method of Mode-Locking in Laser Physics 7
- 1.4 From Optics to Microwaves 13
- 1.5 Outline 14
- 2 Fundamental Theory of Passive Mode-Locked Oscillators 17
- 2.1 Characteristics of Ultra-Short Pulses 17
- 2.1.1 Slowly Varying Amplitudes 17
- 2.1.2 Ultra-Short Pulses 18
- 2.2 Haus Master Equation of Passive Mode-Locked Oscillators 20
- 2.2.1 Amplification 21
- 2.2.2 Saturable Loss and Self Amplitude Modulation 23
- 2.2.3 Dispersion 24
- .2.4 Slow Components 25
- 2.2.5 Time-Shift 27
- 2.2.6 Typical Values 28
- 2.3 Passive Mode-Locked Oscillators for MW Frequencies 30
- 2.3.1 Fast and Slow Components 30
- 2.3.2 Fast Amplifier and Fast Absorber 31
- 2.3.3 Slow Amplifier and Fast Absorber 35
- 2.4 Conclusion 37
- 3 MW Components for Passive Mode-Locked Oscillators 39
- 3.1 Helical Gyro-TWTs 39
- 3.1.1 Helically Corrugated Waveguides 41
- 3.1.2 Electron Cyclotron Maser Interaction 46
- 3.1.3 Large Orbit Electron Beams 50
- 3.1.4 CUSP-Type Electron Guns 52
- 3.1.5 Waveguide Polarizers 60
- 3.1.6 Horn Antenna and Collector 62
- 3.1.7 Broadband Windows 64
- 3.1.8 In-and Out-coupling of High-Power Signals 68
- 3.2 Cyclotron Absorber 70
- 3.3 Helical Gyro-TWTs as Saturable Absorbers 77
- 3.4 Passive Components 78
- 3.4.1 Jones Calculus 78
- 3.4.2 Polarization Splitter 81
- 3.4.3 Polarizers 84
- 4 Simulation Model for Gyro-Devices 87
- 4.1 Field Equations 89
- 4.1.1 Helically Corrugated Waveguide 91
- 4.1.2 Range of Validity 94
- 4.1.3 Multi-Mode Simulations 100
- 4.2 Equations of Motion 101
- 4.2.1 Source Term 103
- 4.2.2 Space Charge 105
- 4.3 Numerical Solution 107
- 4.3.1 Field Equations 108
- 4.3.2 Coupled Equations of Helical Waveguides 110
- 4.3.3 Source Term and Equations of Motion 111
- 4.3.4 Implementation and GPU Acceleration 112
- 4.4 Comparison with Existing Approaches 116
- 5 Design of Amplifier and Absorber 119
- 5.1 Amplifier 120
- 5.1.1 Helical Interaction Region 121
- 5.1.2 Power Capability 122
- 5.1.3 Synchronized Operation Regime 125
- 5.1.4 Slippage Operation Regime 126
- 5.1.5 Length of the Interaction Region 127
- 5.1.6 Amplification of Ultra-Short Pulses 129
- 5.2 Saturable Absorber 134
- 5.2.1 Helical Gyro-TWT Absorber 135
- 5.2.2 Cyclotron Absorber 137
- 5.2.3 Ultra-Short Pulses in a Saturable Absorber 142
- 5.3 Effects of Manufacturing Tolerances 147
- 6 System Design 151
- 6.1 Simulation of a Passive Mode-Locked Oscillator 151
- 6.2 Different Passive Mode-Locked Oscillators 153
- 6.3 Generated Output Signal 157
- 6.3.1 Pulse Power and Length 158
- 6.3.2 Pulse Shape 160
- 6.3.3 Spectrum 161
- 6.4 Transient Behavior of the Oscillator 167
- 6.4.1 Start-up in the Hard Excitation Region 167
- 6.4.2 Start-up in the Soft Excitation Region 169
- 6.4.3 Achievable Repetition Rate 171
- 6.4.4 Achievable Coherence 174
- 6.5 Realistic Start-Up Scenarios 178
- 6.5.1 High-Gain HelicalGyro-TWT 179
- 6.5.2 Hard Excitation with a High-Gain HelicalGyro-TWT 181
- 6.6 Conclusion 182
- 7 Simulation Model for Passive Components 185
- 7.1 Surface Integral Equations 186
- 7.2 Numerical Solution 188
- 7.2.1 Adaptive Cross Approximation 189
- 7.2.2 Sparsified Adaptive Cross Approximation 190
- 7.3 New Zero-Cost Preconditioner 192
- 7.3.1 GMRE Swith Preconditioner 192
- 7.3.2 FGMRE Swith Zero-Cost Preconditioner 193
- 7.3.3 Performance of the Zero-Cost Preconditioner 195
- 7.4 Implementation and Verification 200
- 7.5 Dispersion of Helically Corrugated Waveguides 203
- 8 Design of the Feedback System 205
- 8.1 Requirements 206
- 8.2 Feedback System via Overmoded Waveguides 208
- 8.2.1 Waveguide 210
- 8.2.2 Broadband Polarization Splitter 212
- 8.2.3 Broadband Polarizer 215
- 8.2.4 Performance of the Complete Feedback System 219
- 8.3 Additional Operation Modes 220
- 8.3.1 Operation in the Hard Excitation Region 222
- 8.3.2 New Type of Two-Stage Amplifier 224
- 8.3.3 Operation as a CW Source 226
- 8.4 Conclusion 229
- 9 Conclusion and Outlook 231
- A Appendix 239
- A.1 Split-Step Fourier Method 239
- A.2 Verification of Electron-Wave Interaction Simulations 240
- A.2.1 Short-Pulse ITERGyrotron 241
- A.2.2 W-Band HelicalGyro-TWT 245
- A.3 Verification of EFIE Solver 249
- A.3.1 Verification of Simulated Field Distribution 249
- A.3.2 Verification of Simulated Ohmic-Loss 252
- A.4 Passive Mode-locked Oscillator with Cyclotron Absorber 254
- Bibliography 257
- Contents Acknowledgment 281.