Intelligent Communication Networks Research and Applications

The text presents the basic understanding of the machine learning algorithms used for communication networks in a single volume. It will serve as an ideal reference text for senior undergraduate, graduate students, and academic researchers in diverse engineering domains including electrical, electro...

Descripción completa

Detalles Bibliográficos
Otros Autores: Mahapatra, Rajarshi, editor (editor), Bhattacharyya, Siddhartha, editor, Nag, Avishek, editor
Formato: Libro electrónico
Idioma:Inglés
Publicado: Boca Raton, FL : CRC Press [2024]
Edición:First edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009869139906719
Tabla de Contenidos:
  • Cover
  • Half Title
  • Title Page
  • Copyright Page
  • Dedication
  • Table of Contents
  • Preface
  • Editors
  • Contributors
  • Chapter 1: Various Deep Learning-based Resource Allocation Techniques in Wireless Communication System
  • 1.1 The Next-Generation Wireless Communication Systems
  • 1.2 Machine Learning Algorithms
  • 1.2.1 Deep Neural Networks
  • 1.2.2 Deep Reinforcement Learning
  • 1.2.3 Centralized Learning
  • 1.2.4 Distributed Learning
  • 1.2.5 Federated Learning
  • 1.2.6 Deep Learning in Resource Allocation
  • 1.3 Heterogeneous Network
  • 1.4 Reinforcement Learning
  • 1.5 Federated Learning
  • 1.6 Federated Deep Reinforcement Learning in Resource Allocation
  • 1.6.1 Overview of Federated Deep Reinforcement Learning (FDRL) in Resource Allocation
  • 1.6.2 Applying Federated Deep Reinforcement Learning in Resource Allocation
  • 1.6.2.1 Challenges and Advantages
  • References
  • Chapter 2: Federated Deep Reinforcement Learning-based Resource Allocation in Heterogeneous Networks
  • 2.1 Introduction
  • 2.1.1 Supervised Learning-based Resource Allocation
  • 2.1.2 Unsupervised Learning-based Resource Allocation
  • 2.1.3 Learning Assisted Optimization for Resource Allocation
  • 2.1.4 Deep Reinforcement Learning for Resource Allocation
  • 2.1.4.1 Deep Q-Networks
  • 2.1.4.2 Deep Deterministic Policy Gradient
  • 2.1.5 Federated Learning-based Resource Allocation
  • 2.2 Reinforcement Learning in Resource Allocation
  • 2.3 Aim of the Chapter
  • 2.4 System Model
  • 2.5 Proposed Federated-DRL Algorithm
  • 2.6 Simulation Results
  • 2.6.1 Spectral Efficiency Performance
  • 2.6.2 Timing and Complexity Analysis
  • 2.7 Summary
  • References
  • Chapter 3: A Comprehensive Overview of Internet of Nano-Things (IoNT) in the Next-Generation Heterogeneous Networks: Deployment Aspects, Applications, and Challenges
  • 3.1 Introduction.
  • 3.2 Comparison to Other Studies
  • 3.2.1 5G and IoNT
  • 3.2.2 IoNT Characteristics and Architecture
  • 3.2.2.1 IoNT Characteristics
  • 3.2.2.2 IoNT Architecture
  • 3.2.3 IoNT-Enabling Technologies
  • 3.2.4 IoNT Applications
  • 3.2.5 IoNT Network Architecture and Standards
  • 3.2.5.1 Physical Layer
  • 3.2.5.2 Link Layer
  • 3.2.5.3 Network Layer
  • 3.2.5.4 Upper Layers
  • 3.2.5.5 Standards
  • 3.2.6 Big Data Analytics, Cloud Computing, and Fog Computing in Support of the IoNT
  • 3.2.6.1 Big Data Analytics in Support of the IoNT
  • 3.2.6.2 Cloud Computing in Support of the IoNT
  • 3.2.6.3 Fog Computing in Support of the IoNT
  • 3.2.7 Deployment Aspects of the IoNT
  • 3.2.7.1 Random vs. Deterministic
  • 3.2.7.2 Static vs. Dynamic
  • 3.2.8 Open Research Issues and Future Challenges
  • 3.2.8.1 Architecture and Protocols
  • 3.2.8.2 Reliability
  • 3.2.8.3 Throughput
  • 3.2.8.4 Lifetime
  • 3.2.8.5 Data Collection and Routing Technology
  • 3.2.8.6 Security and Privacy
  • 3.2.8.7 Service Discovery
  • 3.2.8.8 Context Awareness
  • 3.3 Conclusion
  • References
  • Chapter 4: Emerging World of the Metaverse: An Indian Perspective
  • 4.1 Introduction
  • 4.2 Internet of Things and Virtual Reality
  • 4.3 Emergence of the Metaverse
  • 4.4 Network and Communication in the Metaverse
  • 4.4.1 Building Smart Cities with the Metaverse
  • 4.4.2 Industry 4.0 and Digital Twin
  • 4.5 Socialization in the Metaverse
  • 4.6 The Metaverse in India
  • 4.7 Technological Limitations
  • 4.8 Data Safety and Security
  • 4.9 Dilemmas and Conundrum of the Metaverse
  • 4.10 Future of the Metaverse
  • 4.10.1 Metaverse for Business Ideas
  • 4.10.2 Customer User Engagement
  • 4.10.3 Legal Framework in the Metaverse
  • 4.11 Conclusion
  • References
  • Chapter 5: Intelligent Optical Networks: Challenges, Opportunities, and Applications
  • 5.1 Introduction.
  • 5.2 Overview of Intelligent Optical Networks
  • 5.2.1 Evolution of Optical Network Transmission Technology
  • 5.2.2 Optical Network Functionality
  • 5.2.3 Categories of Optical Networks
  • 5.2.4 Classification of Machine Learning
  • 5.2.4.1 Supervised Learning
  • 5.2.4.2 Unsupervised Learning
  • 5.2.4.3 Reinforcement Learning
  • 5.2.5 Techniques for Generation of Data and Modeling Images
  • 5.2.6 Metrics-Classification Metrics, Regression Metrics, and Rand and Jaccard Indices
  • 5.3 Challenges and Opportunities in Intelligent Optical Networks
  • 5.3.1 Challenges in Intelligent Optical Networks
  • 5.3.2 Opportunities in Intelligent Optical Networks
  • 5.4 Applications in Intelligent Optical Networks
  • 5.4.1 Artificial Intelligence in Optical Networks
  • 5.4.2 Machine Learning in Optical Networks
  • 5.4.2.1 ML Approaches to Physical Layer Applications
  • 5.4.2.2 ML Approaches to Network Layer Applications
  • 5.4.3 Big Data Analytics in Optical Networks
  • 5.5 Various Simulation Tools for Intelligent Optical Networks
  • 5.5.1 Simulation Study
  • 5.5.2 Result and Inferences
  • 5.6 Conclusion
  • Acknowledgement
  • References
  • Chapter 6: Machine Learning for Non-Orthogonal Multiple Access
  • 6.1 Introduction: Background and Driving Forces
  • 6.2 PD NOMA
  • 6.3 CR NOMA
  • 6.4 Multi-Carrier NOMA
  • 6.5 Cooperative NOMA
  • 6.5.1 Employing Dedicated Relays
  • 6.6 Millimeter Wave NOMA
  • 6.7 Detection in NOMA: From SIC to Deep Learning
  • 6.8 Practical Implementation of NOMA
  • 6.8.1 Modulation and Coding for NOMA
  • 6.8.2 Imperfect CSI
  • 6.9 NOMA with Machine Learning
  • 6.9.1 Different Aspect of ML in NOMA Networks
  • 6.10 Future Challenges
  • 6.10.1 NOMA with Heterogeneous Networks
  • 6.10.2 NOMA with Simultaneous Wireless Information and Power Transfer (SWIPT)
  • 6.10.3 NOMA with Visible Light Communication (VLC)
  • 6.11 Conclusions
  • References.
  • Chapter 7: Compensating Inbound Signal Strength for Radio-Controlled Mobile Robots Using ANFIS
  • 7.1 Introduction
  • 7.2 Using Fuzzy Logic to Create Telecommunication Systems
  • 7.3 The ANFIS Method
  • 7.4 Training a Neuro-Fuzzy System Based on the Area Difference Method
  • 7.5 Aggregation of Output Values
  • 7.6 Conclusions
  • Acknowledgment
  • Author Contributions
  • References
  • Chapter 8: Optimizing Wireless Sensor Networks Using Machine Learning
  • 8.1 Introduction
  • 8.2 Sensor Network
  • 8.2.1 Types of WSN
  • 8.2.2 Applications of WSN
  • 8.2.3 Challenges in WSN and Design Objectives
  • 8.3 Machine Learning (ML)
  • 8.3.1 Supervised Machine Learning
  • 8.3.2 Unsupervised Learning
  • 8.3.2.1 Clustering
  • 8.3.2.2 Dimension Reduction
  • 8.3.3 Reinforcement Learning
  • 8.3.4 Deep Learning
  • 8.4 ML for Optimizing WSNs
  • 8.4.1 Security
  • 8.4.1.1 Anomaly Detection
  • 8.4.1.2 Intrusion Detection
  • 8.4.2 Routing
  • 8.4.3 Data Aggregation
  • 8.4.4 Coverage and Connectivity
  • 8.4.5 Localization
  • 8.4.6 Quality of Service (QoS)
  • 8.4.7 Energy Harvesting
  • 8.4.8 Congestion Control
  • 8.4.9 Challenges of ML for WSN
  • 8.5 ML in WSN Applications
  • 8.6 Conclusions
  • References
  • Chapter 9: Machine Learning-Assisted Interference Management in the 6G UAV Networks with Soft Frequency Reuse
  • 9.1 Introduction
  • 9.2 Related Works
  • 9.3 UAV-Assisted Wireless Networks
  • 9.4 Soft Frequency Reuse in UAV-Assisted Networks
  • 9.5 Proposed Machine Learning Model
  • 9.6 Simulation Results and Analysis
  • 9.7 Conclusions
  • References
  • Chapter 10: Computational Intelligence in Communication Networks: Classification, Clustering, Reinforcement Learning, Deep Learning
  • 10.1 Introduction
  • 10.1.1 Neural Networks
  • 10.1.2 Fuzzy Systems
  • 10.1.3 Evolutionary Computation
  • 10.2 Differences Between Computational Intelligence and Artificial Intelligence.
  • 10.3 Details of Computational Intelligence
  • 10.3.1 Branches of Computational Intelligence
  • 10.3.2 Principles of CI and Application
  • 10.3.2.1 Fuzzy Logic
  • 10.3.2.2 Neural Networks
  • 10.3.2.3 Evolutionary Computation
  • 10.3.2.4 Natural Language Processing
  • 10.3.2.5 Probabilistic Methods
  • 10.3.3 Implementation of CI
  • 10.3.3.1 Using a Mobile Phone as an Example
  • 10.4 Computational Intelligence in Communication Network
  • 10.5 Conclusion
  • References
  • Index.