SRv6 network programming ushering in a new era of IP networks
"SRv6 Network Programming, beginning with the challenges for Internet Protocol version 6 (IPv6) network development, describes the background, design roadmap, and implementation of Segment Routing over IPv6 (SRv6), as well as the application of this technology in traditional and emerging servic...
Otros Autores: | , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Boca Raton :
CRC Press
2021.
|
Edición: | First edition |
Colección: | Data Communication
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009869131006719 |
Tabla de Contenidos:
- Cover
- Half Title
- Series Page
- Title Page
- Copyright Page
- Table of Contents
- Foreword I
- Foreword II
- Preface
- Teams
- Acknowledgments
- Author
- Part I: Introduction
- Chapter 1 ◾ SRv6 Background
- 1.1 OVERVIEW OF INTERNET DEVELOPMENT
- 1.2 START OF ALL IP 1.0: A COMPLETE VICTORY FOR IP
- 1.2.1 Competition between ATM and IP
- 1.2.2 MPLS: The Key to All IP 1.0
- 1.3 CHALLENGES FACING ALL IP 1.0: IP/MPLS DILEMMA
- 1.3.1 MPLS Dilemma
- 1.3.2 IPv4 Dilemma
- 1.3.3 Challenges for IPv6
- 1.4 OPPORTUNITIES FOR ALL IP 1.0: SDN AND NETWORK PROGRAMMING
- 1.4.1 OpenFlow
- 1.4.2 POF
- 1.4.3 P4
- 1.4.4 SR
- 1.5 KEY TO ALL IP 2.0: SRv6
- 1.6 STORIES BEHIND SRv6 DESIGN
- REFERENCES
- Part II: SRv6 1.0
- Chapter 2 ◾ SRv6 Fundamentals
- 2.1 SRv6 OVERVIEW
- 2.2 NETWORK INSTRUCTIONS: SRv6 SEGMENTS
- 2.3 NETWORK NODES: SRv6 NODES
- 2.3.1 SRv6 Source Node
- 2.3.2 Transit Node
- 2.3.3 Endpoint Node
- 2.4 NETWORK PROGRAM: SRv6 EXTENSION HEADER
- 2.4.1 SRv6 Extension Header Design
- 2.4.2 SRH TLVs
- 2.4.2.1 Padding TLV
- 2.4.2.2 HMAC TLV
- 2.4.3 SRv6 Instruction Set: Endpoint Node Behaviors
- 2.4.3.1 End SID
- 2.4.3.2 End.X SID
- 2.4.3.3 End.T SID
- 2.4.3.4 End.DX6 SID
- 2.4.3.5 End.DX4 SID
- 2.4.3.6 End.DT6 SID
- 2.4.3.7 End.DT4 SID
- 2.4.3.8 End.DT46 SID
- 2.4.3.9 End.DX2 SID
- 2.4.3.10 End.DX2V SID
- 2.4.3.11 End.DT2U SID
- 2.4.3.12 End.DT2M SID
- 2.4.3.13 End.B6.Insert SID
- 2.4.3.14 End.B6.Encaps SID
- 2.4.3.15 End.BM SID
- 2.4.4 SRv6 Instruction Set: Source Node Behaviors
- 2.4.4.1 H.Insert
- 2.4.4.2 H.Encaps
- 2.4.4.3 H.Encaps.L2
- 2.4.5 SRv6 Instruction Set: Flavors
- 2.4.5.1 PSP
- 2.4.5.2 USP
- 2.4.5.3 USD
- 2.5 NETWORK PROGRAM EXECUTION: SRv6 PACKET FORWARDING
- 2.5.1 Local SID Table
- 2.5.2 Packet Forwarding Process
- 2.5.2.1 Step 1: Processing on SRv6 Source Node A.
- 2.5.2.2 Step 2: Processing on Endpoint Node B
- 2.5.2.3 Step 3: Processing on Transit Node C
- 2.5.2.4 Step 4: Processing on Endpoint Node D
- 2.5.2.5 Step 5: Processing on Transit Node E
- 2.5.2.6 Step 6: Processing on Endpoint Node F
- 2.6 ADVANTAGES OF SRv6 NETWORK PROGRAMMING
- 2.6.1 Superior Backward Compatibility and Smooth Evolution
- 2.6.2 High Scalability and Simple Deployment in Cross-Domain Scenarios
- 2.6.3 Networking Programming for Building Intelligent Networks
- 2.6.4 All Things Connected through an E2E Network
- 2.7 STORIES BEHIND SRv6 DESIGN
- REFERENCES
- Chapter 3 ◾ Basic Protocols for SRv6
- 3.1 IS-IS EXTENSIONS
- 3.1.1 IS-IS SRv6 Fundamentals
- 3.1.2 IS-IS Extensions for SRv6
- 3.1.2.1 SRv6 Capabilities Sub-TLV
- 3.1.2.2 Node MSD Sub-TLV
- 3.1.2.3 SRv6 Locator TLV
- 3.1.2.4 SRv6 End SID Sub-TLV
- 3.1.2.5 SRv6 End.X SID Sub-TLV
- 3.1.2.6 SRv6 LAN End.X SID Sub-TLV
- 3.1.2.7 SRv6 SID Structure Sub-Sub-TLV
- 3.2 OSPFv3 EXTENSIONS
- 3.2.1 OSPFv3 SRv6 Fundamentals
- 3.2.2 OSPFv3 Extensions for SR v6
- 3.2.2.1 SRv6 Capabilities TLV
- 3.2.2.2 SR Algorithm TLV
- 3.2.2.3 Node MSD TLV
- 3.2.2.4 OSPFv3 SRv6 Locator LSA
- 3.2.2.5 SRv6 Locator TLV
- 3.2.2.6 SRv6 End SID Sub-TLV
- 3.2.2.7 SRv6 End.X SID Sub-TLV
- 3.2.2.8 SRv6 LAN End.X SID Sub-TLV
- 3.2.2.9 Link MSD Sub-TLV
- 3.2.2.10 SRv6 SID Structure Sub-Sub-TLV
- 3.3 STORIES BEHIND SRv6 DESIGN
- REFERENCES
- Chapter 4 ◾ SRv6 TE
- 4.1 SR-TE ARCHITECTURE
- 4.1.1 Traditional MPLS TE Architecture
- 4.1.2 Centralized SR-TE Architecture
- 4.2 BGP-LS FOR SRv6
- 4.2.1 BGP-LS Overview
- 4.2.2 BGP-LS Extensions for SRv6
- 4.2.2.1 SRv6 SID NLRI
- 4.2.2.2 SRv6 SID Information TLV
- 4.2.2.3 SRv6 Endpoint Function TLV
- 4.2.2.4 SRv6 BGP Peer Node SID TLV
- 4.2.2.5 SRv6 SID Structure TLV
- 4.2.2.6 SRv6 Capabilities TLV
- 4.2.2.7 SRv6 Node MSD Types.
- 4.2.2.8 SRv6 End.X SID TLV
- 4.2.2.9 SRv6 LAN End.X SID TLV
- 4.2.2.10 SRv6 Locator TLV
- 4.3 PCEP FOR SRv6
- 4.3.1 PCE Overview
- 4.3.2 Stateful PCE
- 4.3.3 PCEP Extensions for SRv6
- 4.3.3.1 SRv6 PATH-SETUP-TYPE
- 4.3.3.2 SRv6 PCE Capability Sub-TLV
- 4.3.3.3 SRv6-ERO Subobject
- 4.3.3.4 SRv6-RRO Subobject
- 4.4 SRv6 POLICY
- 4.4.1 SRv6 Policy Model
- 4.4.1.1 Keys
- 4.4.1.2 Candidate Paths
- 4.4.1.3 Segment Lists
- 4.4.2 SRv6 Policy Path Computation
- 4.4.2.1 Manual Configuration
- 4.4.2.2 Headend Computation
- 4.4.2.3 Centralized Computation
- 4.4.3 Traffic Steering into an SRv6 Policy
- 4.4.3.1 Binding SID-Based Traffic Steering
- 4.4.3.2 Color-Based Traffic Steering
- 4.4.3.3 DSCP-Based Traffic Steering
- 4.4.4 Data Forwarding over an SRv6 Policy
- 4.4.5 SRv6 Policy Fault Detection
- 4.4.5.1 SBFD for SRv6 Policy
- 4.4.5.2 Headend-Based Fault Detection
- 4.4.6 SRv6 Policy Switchover
- 4.5 BGP SRv6 POLICY
- 4.5.1 SRv6 Policy SAFI and NLRI
- 4.5.2 SR Policy and Tunnel Encaps Attribute
- 4.5.3 Binding SID Sub-TLV
- 4.5.4 Preference Sub-TL V
- 4.5.5 Segment List Sub-TLV
- 4.5.6 Weight Sub-TLV
- 4.5.7 Segment Sub-TLV
- 4.5.8 Policy Priority Sub-TLV
- 4.5.9 Policy Name Sub-TLV
- 4.6 STORIES BEHIND SRv6 DESIGN
- REFERENCES
- Chapter 5 ◾ SRv6 VPN
- 5.1 VPN OVERVIEW
- 5.1.1 Basic VPN Model
- 5.1.2 VPN Service Types
- 5.1.2.1 L3VPN
- 5.1.2.2 L2VPN and EVPN
- 5.2 SRv6 VPN PROTOCOL EXTENSIONS
- 5.2.1 SRv6 Services TLV
- 5.2.2 SRv6 SID Information Sub-TLV
- 5.2.3 SRv6 SID Structure Sub-Sub-TLV
- 5.3 SRv6 L3VPN
- 5.3.1 Principles of L3VPN over SRv6 BE
- 5.3.1.1 Workflow of L3VPN over SRv6 BE in the Control Plane
- 5.3.1.2 Workflow of L3VPN over SRv6 BE in the Forwarding Plane
- 5.3.2 Principles of L3VPN over SRv6 TE
- 5.3.2.1 Workflow of L3VPN over SRv6 Policy in the Control Plane.
- 5.3.2.2 Workflow of L3VPN over SRv6 Policy in the Forwarding Plane
- 5.4 SRv6 EVPN
- 5.4.1 Principles of EVPN E-LAN over SRv6
- 5.4.1.1 MAC Address Learning and Unicast Forwarding
- 5.4.1.2 Replication List Establishment and BUM Traffic Forwarding
- 5.4.2 Principles of EVPN E-Line over SRv6
- 5.4.3 Principles of EVPN L3VPN over SRv6
- 5.4.4 SRv6 EVPN Protocol Extensions
- 5.4.4.1 Ethernet A-D Route
- 5.4.4.2 MAC/IP Advertisement Route
- 5.4.4.3 IMET Route
- 5.4.4.4 ES Route
- 5.4.4.5 IP Prefix Route
- 5.5 STORIES BEHIND SRv6 DESIGN
- REFERENCES
- Chapter 6 ◾ SRv6 Reliability
- 6.1 IP FRR AND E2E PROTECTION
- 6.1.1 TI-LFA Protection
- 6.1.1.1 LFA
- 6.1.1.2 RLFA
- 6.1.1.3 TI-LFA
- 6.1.2 SRv6 Midpoint Protection
- 6.1.3 Egress Protection
- 6.1.3.1 Anycast FRR
- 6.1.3.2 Mirror Protection
- 6.2 MICROLOOP AVOIDANCE
- 6.2.1 Microloop Cause
- 6.2.2 SRv6 Local Microloop Avoidance in a Traffic Switchover Scenario
- 6.2.3 SRv6 Microloop Avoidance in a Traffic Switchback Scenario
- 6.2.4 SRv6 Remote Microloop Avoidance in a Traffic Switchover Scenario
- 6.3 STORIES BEHIND SRv6 DESIGN
- REFERENCES
- Chapter 7 ◾ SRv6 Network Evolution
- 7.1 CHALLENGES FACED BY SRv6 NETWORK EVOLUTION
- 7.1.1 Network Upgrade to Support IPv6
- 7.1.2 SRv6 Compatibility with Legacy Devices
- 7.1.3 Security Challenges Faced by SRv6
- 7.2 INCREMENTAL DEPLOYMENT FOR SRv6 NETWORKS
- 7.2.1 SRv6 Evolution Paths
- 7.2.2 SRv6 Deployment Process
- 7.2.3 SRv6 Evolution Practices
- 7.2.3.1 SRv6 Deployment Practice of China Telecom
- 7.2.3.2 SRv6 Deployment Practice of China Unicom
- 7.3 SRv6 COMPATIBILITY WITH LEGACY DEVICES
- 7.3.1 Using Binding SIDs to Reduce the Depth of the SRv6 SID Stack
- 7.3.2 Applying FlowSpec to SRv6
- 7.4 SRv6 NETWORK SECURITY
- 7.4.1 IPv6 Security Measures
- 7.4.2 Security Measures for Source Routing.
- 7.4.3 SRv6 Security Solution
- 7.5 STORIES BEHIND SRv6 DESIGN
- REFERENCES
- Chapter 8 ◾ SRv6 Network Deployment
- 8.1 SRv6 SOLUTION
- 8.1.1 Single-AS Network
- 8.1.1.1 IP Backbone Network
- 8.1.1.2 Metro Network
- 8.1.1.3 Mobile Transport Network
- 8.1.1.4 Data Center Network
- 8.1.2 E2E Network
- 8.1.2.1 Inter-AS VPN
- 8.1.2.2 Carrier's Carrier
- 8.2 IPv6 ADDRESS PLANNING
- 8.2.1 Principles for IPv6 Address Planning
- 8.2.2 IPv6 Address Allocation Methods
- 8.2.3 Hierarchical IPv6 Address Allocation
- 8.3 SRv6 NETWORK DESIGN
- 8.3.1 Basic SRv6 Configuration
- 8.3.2 IGP Design
- 8.3.3 BGP Design
- 8.3.4 SRv6 BE Design
- 8.3.4.1 Locator Route Advertisement
- 8.3.4.2 IS-IS Route Import and Aggregation
- 8.3.4.3 SRv6 BE TI-LFA Protection
- 8.3.5 SRv6 TE Design
- 8.3.5.1 SRv6 Policy
- 8.3.5.2 BGP-LS and BGP SRv6 Policy
- 8.3.5.3 SRv6 Policy Path Computation
- 8.3.5.4 SRv6 Policy Reliability
- 8.3.6 VPN Service Design
- 8.3.6.1 SRv6 EVPN L3VPN
- 8.3.6.2 SRv6 EVPN E-Line
- 8.3.6.3 EVPN SRv6 Policy
- 8.4 EVOLUTION FROM MPLS TO SRv6
- 8.5 STORIES BEHIND SRv6 DESIGN
- REFERENCES
- Part III: SRv6 2.0
- Chapter 9 ◾ SRv6 OAM and On-Path Network Telemetry
- 9.1 SRv6 OAM
- 9.1.1 OAM Overview
- 9.1.2 SRv6 FM
- 9.1.2.1 Classic IP Ping
- 9.1.2.2 SRv6 SID Ping
- 9.1.2.3 Classic Traceroute
- 9.1.2.4 SRv6 SID Traceroute
- 9.1.3 SRv6 PM
- 9.1.3.1 TWAMP Fundamentals
- 9.1.3.2 TWAMP-Based Active SRv6 PM
- 9.1.3.3 Coloring-Based Hybrid SRv6 PM
- 9.2 ON-PATH NETWORK TELEMETRY
- 9.2.1 On-Path Network Telemetry Overview
- 9.2.2 On-Path Network Telemetry Modes
- 9.2.3 IFIT Architecture and Functions
- 9.2.3.1 Smart Traffic Selection
- 9.2.3.2 Efficient Data Sending
- 9.2.3.3 Dynamic Network Probe
- 9.2.4 IFIT Encapsulation Mo de
- 9.2.5 IFIT for SRv6
- 9.2.5.1 Passport Mode
- 9.2.5.2 Postcard Mode.
- 9.2.5.3 SRv6 IFIT Encapsulation.