Big Data Techniques and Technologies in Geoinformatics
This revised new edition provides up-to-date knowledge on the latest developments related to these three fields for solving geoinformatics problems. There are seven new chapters, and each of them focuses on a separate real-world problem to which deep learning is applied.
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Boca Raton, FL :
CRC Press
[2025]
|
Edición: | Second edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009869130706719 |
Tabla de Contenidos:
- Cover
- Half Title
- Title Page
- Copyright Page
- Table of Contents
- Editor
- Contributors
- Preface
- Chapter 1: Distributed and Parallel Computing
- 1.1 Introduction
- 1.2 Distributed Computing
- 1.2.1 Cluster Computing
- 1.2.1.1 Architecture
- 1.2.1.2 Data and Message Communication
- 1.2.1.3 Task Management and Administration
- 1.2.1.4 Example Geospatial Big Data Project on Cluster
- 1.2.2 Grid Computing
- 1.2.2.1 Architecture
- 1.2.2.2 Types of Grid Architectures
- 1.2.2.3 Topology
- 1.2.2.4 Perspectives
- 1.2.2.4.1 User
- 1.2.2.4.2 Administrator
- 1.2.2.4.3 Application Developer
- 1.2.2.5 Example Geospatial Big Data Project on Grids
- 1.2.3 Cloud Computing
- 1.2.3.1 Taxonomies
- 1.2.3.2 Cloud Service Models
- 1.2.3.3 Cloud Deployment Models
- 1.2.3.3.1 Cloud APIs
- 1.2.3.3.2 Levels of Cloud APIs
- 1.2.3.3.3 Categories of APIs
- 1.2.3.4 Example Geospatial Big Data Project on Clouds
- 1.3 Parallel Computing
- 1.3.1 Classes of Parallel Computing
- 1.3.2 Shared Memory Multiple Processing
- 1.3.3 Distributed Memory Multiple Processing
- 1.3.4 Hybrid Distributed Shared Memory
- 1.3.5 Example Geospatial Big Data Project on Parallel Computers
- 1.4 Supercomputing
- 1.4.1 Supercomputing Worldwide
- 1.4.2 Trend
- 1.4.3 Future Supercomputer Research
- 1.4.4 Example Geospatial Big Data Project on Supercomputers
- 1.5 XSEDE: A Single Virtual System
- 1.5.1 Resources
- 1.5.2 Services
- 1.5.3 Example Big Geospatial Data Project on XSEDE
- 1.6 Choosing Appropriate Computing Environment
- 1.7 Summary
- References
- Chapter 2: GEOSS Clearinghouse Integrating Geospatial Resources to Support the Global Earth Observation System of Systems
- 2.1 Introduction
- 2.2 Catalog and Clearinghouse Research Review
- 2.2.1 Metadata Repository and Standardized Metadata.
- 2.2.2 Catalog and Clearinghouse Based on Service-Oriented Architecture and Standard Services
- 2.2.3 Semantic-Based Metadata Sharing and Data Discovery
- 2.3 Technological Issues and Solutions
- 2.3.1 Interoperability
- 2.3.2 Provenance and Updating
- 2.3.3 System Performance
- 2.3.4 Timely Updating
- 2.4 Design and Implementation of CLH
- 2.4.1 Architecture
- 2.4.2 Administration, User, and Group Management
- 2.4.3 Harvesting
- 2.4.4 Metadata Standards and Transformation
- 2.4.5 User Interface and Programming APIs
- 2.4.5.1 Search through Web Graphics User Interface
- 2.4.5.2 Remote Search
- 2.5 Usage and Operational Status
- 2.5.1 System Operations
- 2.5.2 System Metadata Status
- 2.5.3 Usage
- 2.6 Big Geospatial Data Challenges and Solutions
- 2.6.1 Data and Database
- 2.6.2 Distribution and Cloud Computing
- 2.6.3 Searching Performance and Index
- 2.7 Summary and Future Research
- Acknowledgments
- Notes
- References
- Chapter 3: Using a Cloud Computing Environment to Process Large 3D Spatial Datasets
- 3.1 Introduction
- 3.1.1 Big Spatial Data
- 3.1.2 Need for Cloud Computing Environment
- 3.2 Methodology
- 3.2.1 Iowa LiDAR Database
- 3.2.2 CLiPS Design and Implementation
- 3.3 Results
- 3.3.1 Application Example: DEM Generation Using Large LiDAR Datasets
- 3.3.2 Heuristic Models Development
- 3.4 Conclusions
- Acknowledgment
- References
- Chapter 4: Building Open Environments to Meet Big Data Challenges in Earth Sciences
- 4.1 Introduction
- 4.2 Technology Foundation and Methodology
- 4.2.1 Interoperability
- 4.2.2 Serviceability
- 4.2.3 Infrastructure
- 4.3 Discussions
- 4.4 Summary
- References
- Chapter 5: Developing Online Visualization and Analysis Services for NASA Satellite-Derived Global Precipitation Products during the Big Geospatial Data Era
- 5.1 Introduction.
- 5.2 Overview of Global Precipitation Products and Data Services
- 5.2.1 TRMM Background
- 5.2.2 TRMM Products
- 5.2.3 TRMM Data Services
- 5.2.4 Global Precipitation Measurement Mission
- 5.3 Big Data Challenges and Solutions
- 5.3.1 Big Data Challenges
- 5.3.2 Solutions
- 5.4 A Prototype
- 5.4.1 Data
- 5.4.2 System Description
- 5.4.3 Examples
- 5.5 Conclusions
- Acknowledgment
- References
- Chapter 6: Algorithmic Design Considerations for Geospatial and/or Temporal Big Data
- 6.1 Motivation
- 6.1.1 Challenges
- 6.1.1.1 Algorithmic Time Complexity
- 6.1.1.2 Algorithmic Space Complexity
- 6.2 Geospatial Big Data Algorithms: The State of the Art
- 6.2.1 Volume Algorithms
- 6.2.2 Velocity Algorithms
- 6.2.3 Variety Algorithms
- 6.3 Analysis of Classical Geospatial and Temporal Algorithms
- 6.4 Approaches to Algorithmic Adaptation for Geospatial Big Data
- 6.4.1 Divide and Conquer
- 6.4.2 Subsampling
- 6.4.3 Aggregation
- 6.4.4 Filtering
- 6.4.5 Online Algorithms
- 6.4.6 Streaming Algorithms
- 6.4.7 Iterative Algorithms
- 6.4.8 Relaxation
- 6.4.9 Convergent Algorithms
- 6.4.10 Stochastic Algorithms
- 6.4.11 Batch versus Online Algorithms
- 6.4.12 Dimensionality Reduction
- 6.4.13 Example
- 6.5 Open Challenges
- 6.6 Summary
- References
- Chapter 7: Machine Learning on Geospatial Big Data
- 7.1 Motivation
- 7.1.1 Supervised, Unsupervised, and Feature Learning
- 7.1.1.1 Supervised Learning
- 7.1.1.2 Unsupervised Learning
- 7.1.1.3 Feature Learning
- 7.1.2 Big Data Challenges
- 7.1.3 Three Vs
- 7.1.3.1 Volume
- 7.1.3.2 Velocity
- 7.1.3.3 Variety
- 7.2 Geospatial Big Data Feature Learning
- 7.2.1 Approaches to Big Data Feature Learning
- 7.3 Reducing Dimensionality of Geospatial Big Data, Making Machine Learning Tractable
- 7.3.1 Feature Construction
- 7.3.1.1 Windowing in Raster Data.
- 7.3.1.2 Windowing in Time Series Geographic Data
- 7.3.1.3 Big Data Feature Construction
- 7.3.2 Dimensionality Reduction
- 7.3.2.1 Feature Selection
- 7.3.2.2 Feature Extraction
- 7.4 Algorithmic Approaches to Machine Learning of Geospatial Big Data
- 7.4.1 Space Complexity
- 7.4.1.1 Online Learning
- 7.4.2 Time Complexity
- 7.4.2.1 Online Learning
- 7.4.2.2 Ensemble Learning
- 7.5 Conclusions
- Note
- References
- Chapter 8: Spatial Big Data: Case Studies on Volume, Velocity, and Variety
- 8.1 Introduction
- 8.2 What Is Spatial Big Data?
- 8.3 Volume: Discovering Sub-Paths in Climate Data
- 8.4 Velocity: Spatial Graph Outlier Detection in Traffic Data
- 8.5 Variety in Data Types: Identifying Bike Corridors
- 8.6 Variety in Output: Spatial Network Activity Summarization
- 8.7 Summary
- References
- Chapter 9: Exploiting Big VGI to Improve Routing and Navigation Services
- 9.1 Introduction
- 9.2 What Is Big Data?
- 9.3 VGI as Big Data
- 9.4 Traditional Routing Services
- 9.5 Routing Services using Big VGI/Crowdsourced Data
- 9.5.1 Routing with Landmarks Extracted from Big VGI/Crowdsourced Data
- 9.5.2 GPS Traces
- 9.5.3 Social Media Reports
- 9.6 Challenges for Exploiting Big VGI to Improve Routing Services
- 9.6.1 Limitations of VGI and Crowdsourced Data
- 9.6.2 Impact on the Development of Routing and Navigation Services
- 9.6.2.1 Interoperability
- 9.6.2.2 Finding the Right Data
- 9.6.2.3 Analyzing and Interpreting Data
- 9.6.3 Applicability of Big Data Solutions to Big VGI
- 9.7 Summary
- References
- Chapter 10: Efficient Frequent Sequence Mining on Taxi Trip Records Using Road Network Shortcuts
- 10.1 Introduction
- 10.2 Background, Motivation, and Related Work
- 10.3 Prototype System Architecture
- 10.4 Experiments and Results
- 10.4.1 Results of BC on Original Sequences.
- 10.4.2 Results of Association Rule Mining on Original Sequences
- 10.4.3 Results of the Proposed Approach
- 10.5 Conclusion and Future Work
- Notes
- References
- Chapter 11: Geoinformatics and Social Media: New Big Data Challenge
- 11.1 Introduction: Social Media and Ambient Geographic Information
- 11.2 Characteristics of Big Geosocial Data
- 11.3 Geosocial Complexity
- 11.4 Modeling and Analyzing Geosocial Multimedia: Heterogeneity and Integration
- 11.5 Outlook: Grand Challenges and Opportunities for Big Geosocial Data
- Notes
- References
- Chapter 12: Insights and Knowledge Discovery from Big Geospatial Data Using TMC-Pattern
- 12.1 Introduction
- 12.2 Trajectory Modeling
- 12.2.1 TMC-Pattern
- 12.2.1.1 Determining Meaningful Location
- 12.2.2 Time Correlation
- 12.2.3 Location Context Awareness
- 12.2.4 Relevance Measures of a Region
- 12.2.5 TMC-Pattern
- 12.2.5.1 Determining Residence Mode of a Region
- 12.2.6 Trajectory Extraction
- 12.3 Trajectory Mining
- 12.3.1 Frequent Locations from TMC-Pattern
- 12.3.2 TMC-Pattern and Markov Chain for Prediction
- 12.3.2.1 Markov Chains
- 12.3.2.2 Markov Chain from TMC-Pattern
- 12.3.2.3 Computation of Markov Chain Transition Probability
- 12.3.2.4 Computation of Scores from TMC-Pattern
- 12.4 Empirical Evaluations
- 12.4.1 Experimental Dataset
- 12.4.2 Evaluation of TMC-Pattern Extraction
- 12.4.2.1 Single-User Data
- 12.4.2.2 Multiuser Data
- 12.4.3 Frequent Patterns
- 12.4.4 Location Prediction
- 12.5 Summary
- References
- Chapter 13: Geospatial Cyberinfrastructure for Addressing the Big Data Challenges on the Worldwide Sensor Web
- 13.1 Introduction
- 13.2 Big Data Challenges on the Worldwide Sensor Web
- 13.3 Worldwide Sensor Web Architecture
- 13.4 GeoCENS Architecture
- 13.4.1 OGC-Based Sensor Web servers.
- 13.4.2 Decentralized Hybrid P2P Sensor Web Service Discovery.