Classification Methods for Remotely Sensed Data
The new edition of the bestselling Classification Methods for Remotely Sensed Data covers current state-of-the-art machine learning algorithms and developments in the analysis of remotely sensed data, and presents new AI-based analysis tools and metrics together with ongoing debates on accuracy asse...
Otros Autores: | , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Boca Raton, FL :
CRC Press
[2025]
|
Edición: | Third edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009869097406719 |
Tabla de Contenidos:
- Cover
- Half Title
- Title Page
- Copyright Page
- Dedication
- Table of Contents
- Preface to the Third Edition
- Preface to the Second Edition
- Preface to the First Edition
- Acknowledgments
- Authors
- Chapter 1 Fundamentals of Remote Sensing
- 1.1 Introduction to Remote Sensing
- 1.1.1 Atmospheric Interactions
- 1.1.2 Reflectance Properties of Surface Materials
- 1.1.3 Spatial, Spectral, and Radiometric Resolution
- 1.1.4 Scale Issues in Remote Sensing
- 1.2 Optical Remote Sensing Systems
- 1.3 Atmospheric Correction
- 1.3.1 Dark Object Subtraction
- 1.3.2 Modeling Techniques
- 1.3.2.1 Modeling the Atmospheric Effect
- 1.3.2.2 Steps in Atmospheric Correction
- 1.4 Correction for Topographic Effects
- 1.5 Remote Sensing in the Microwave Region
- 1.6 Radar Fundamentals
- 1.6.1 SLAR Image Resolution
- 1.6.2 Geometric Effects on Radar Images
- 1.6.3 Factors Affecting Radar Backscatter
- 1.6.3.1 Surface Roughness
- 1.6.3.2 Surface Conductivity
- 1.6.3.3 Parameters of the Radar Equation
- 1.7 Imaging Radar Polarimetry
- 1.7.1 Radar Polarization State
- 1.7.2 Polarization Synthesis
- 1.7.3 Polarization Signatures
- 1.8 Radar Speckle Suppression
- 1.8.1 Multilook Processing
- 1.8.2 Filters for Speckle Suppression
- References
- Chapter 2 Pattern Recognition Principles
- 2.1 A Terminological Introduction
- 2.2 Taxonomy of Classification Techniques
- 2.3 Fundamental Pattern Recognition Techniques
- 2.3.1 Unsupervised Methods
- 2.3.1.1 The k-Means Algorithm
- 2.3.1.2 Fuzzy C-Means Clustering
- 2.3.2 Supervised Methods
- 2.3.2.1 Parallelepiped Method
- 2.3.2.2 Minimum Distance Classifier
- 2.3.2.3 Maximum Likelihood Classifier
- 2.3.2.4 Fuzzy Maximum Likelihood Classifier
- 2.4 Spectral Unmixing
- 2.5 Ensemble Classifiers
- 2.6 Incorporation of Ancillary Information.
- 2.6.1 Use of Texture and Context
- 2.6.2 Using Ancillary Multisource Data
- 2.7 Epilogue
- References
- Chapter 3 Dimensionality Reduction: Feature Extraction and Selection
- 3.1 Feature Extraction
- 3.1.1 Principal Component Analysis
- 3.1.2 Minimum/Maximum Autocorrelation Factors
- 3.1.3 Maximum Noise Fraction (MNF) Transformation
- 3.1.4 Independent Component Analysis
- 3.1.5 Projection Pursuit
- 3.2 Feature Selection
- 3.2.1 Greedy Search Methods
- 3.2.2 Simulated Annealing
- 3.2.3 Separability Indices
- 3.2.4 Filter-Based Methods
- 3.2.4.1 Correlation-Based Feature Selection
- 3.2.4.2 Information Gain
- 3.2.4.3 Gini Impurity Index
- 3.2.4.4 Minimum Redundancy-Maximum Relevance
- 3.2.4.5 Chi-Square Test
- 3.2.4.6 Relief-F
- 3.2.4.7 Symmetric Uncertainty
- 3.2.4.8 Fisher's Test
- 3.2.4.9 OneR
- 3.2.5 Wrappers
- 3.2.5.1 Genetic Algorithm
- 3.2.5.2 Particle Swarm Optimization
- 3.2.5.3 Feature Selection with SVMs
- 3.2.6 Embedded Methods
- 3.2.6.1 K-Nearest Neighbor-Based Feature Selection
- 3.2.6.2 Feature Selection with Ensemble Learners
- 3.2.6.3 Hilbert-Schmidt Independence Criterion with Lasso
- 3.3 Concluding Remarks
- References
- Chapter 4 Multisource Image Fusion and Classification
- 4.1 Image Fusion
- 4.1.1 Image Fusion Methods
- 4.1.1.1 PCA-Based Image Fusion
- 4.1.1.2 IHS-Based Image Fusion
- 4.1.1.3 Brovey Transform
- 4.1.1.4 Gram-Schmidt Transform
- 4.1.1.5 Wavelet Transform
- 4.1.1.6 Deep Learning for Image Fusion
- 4.1.2 Assessment of Fused Image Quality
- 4.1.3 Performance Evaluation of Fusion Methods
- 4.2 Multisource Classification Using the Stacked-Vector Method
- 4.3 The Extension of Bayesian Classification Theory
- 4.3.1 An Overview
- 4.3.1.1 Feature Extraction
- 4.3.1.2 Probability or Evidence Generation
- 4.3.1.3 Multisource Consensus.
- 4.3.2 Bayesian Multisource Classification Mechanism
- 4.3.3 A Refined Multisource Bayesian Model
- 4.3.4 Multisource Classification Using the MRF
- 4.3.5 Assumption of Inter-Source Independence
- 4.4 Evidential Reasoning
- 4.4.1 Concept Development
- 4.4.2 Belief Function and Belief Interval
- 4.4.3 Evidence Combination
- 4.4.4 Decision Rules for Evidential Reasoning
- 4.5 Dealing with Source Reliability
- 4.5.1 Using Classification Accuracy
- 4.5.2 Use of Class Separability
- 4.5.3 Data Information Class Correspondence Matrix
- 4.6 Concluding Remarks and Future Trends
- References
- Chapter 5 Support Vector Machines
- 5.1 Linear Classification
- 5.1.1 The Separable Case
- 5.1.2 The Nonseparable Case
- 5.2 Nonlinear Classification and Kernel Functions
- 5.2.1 Nonlinear SVMs
- 5.2.2 Kernel Functions
- 5.3 Parameter Determination
- 5.3.1 t-Fold Cross-Validations
- 5.3.2 Bound on Leave-One-Out Error
- 5.3.3 Grid Search
- 5.3.4 Gradient Descent Method
- 5.4 Multiclass Classification
- 5.4.1 One-Against-One, One-Against-Others, and DAG
- 5.4.2 Multiclass SVMs
- 5.4.2.1 Vapnik's Approach
- 5.4.2.2 Methodology of Crammer and Singer
- 5.5 Relevance Vector Machines
- 5.6 Twin Support Vector Machines
- 5.7 Deep Support Vector Machines
- 5.8 Concluding Remarks
- References
- Chapter 6 Decision Trees
- 6.1 ID3, C4.5, and SEE5.0 Decision Trees
- 6.1.1 ID3
- 6.1.2 C4.5
- 6.1.3 SEE5.0 (C5.0)
- 6.2 CHAID
- 6.3 CART
- 6.4 QUEST
- 6.4.1 Split Point Selection
- 6.4.2 Attribute Selection
- 6.5 Tree Induction from Artic fi ial Neural Networks
- 6.6 Pruning Decision Trees
- 6.6.1 Reduced Error Pruning
- 6.6.2 Pessimistic Error Pruning
- 6.6.3 Error-Based Pruning
- 6.6.4 Cost Complexity Pruning
- 6.6.5 Minimal Error Pruning
- 6.7 Ensemble Methods
- 6.7.1 Boosting
- 6.7.2 Random Forest
- 6.7.3 Rotation Forest.
- 6.7.4 Canonical Correlation Forest
- 6.7.5 Extreme Gradient Boosting
- 6.7.6 Light Gradient Boosting Machines
- 6.7.7 Gradient Boosting Machines
- 6.7.8 Categorical Boosting
- 6.7.9 Natural Gradient Boosting
- 6.8 Concluding Remarks
- References
- Chapter 7 Deep Learning
- 7.1 Fundamentals
- 7.1.1 Stochastic Gradient Descent
- 7.1.2 Backpropagation
- 7.1.3 Regularization
- 7.1.3.1 Weight Decay
- 7.1.3.2 Dropout
- 7.1.3.3 Data Augmentation
- 7.1.3.4 Early Stopping
- 7.1.4 Activation Functions
- 7.1.5 Loss Functions
- 7.2 Neural Network Architectures
- 7.2.1 Multilayer Perceptron
- 7.2.2 Convolutional Neural Networks
- 7.2.2.1 Convolutional Layers
- 7.2.2.2 Pooling Layers
- 7.2.2.3 Fully Connected Layers
- 7.2.2.4 Receptive Field and Feature Map
- 7.2.2.5 Training CNNs
- 7.2.2.6 Data Structures in CNNs
- 7.2.2.7 Evolving Trends in CNN Design
- 7.2.3 Recurrent Neural Networks
- 7.2.3.1 Long- and Short-Term Memory
- 7.2.3.2 Gated Recurrent Unit
- 7.2.4 Vision Transformers
- 7.2.5 Deep Multilayer Perceptron
- 7.2.6 Generative Adversarial Networks
- 7.2.7 Deep Autoencoders
- 7.2.7.1 Undercomplete Autoencoders
- 7.2.7.2 Regularized Autoencoders
- 7.2.7.3 Sparse Autoencoders
- 7.2.7.4 Denoising Autoencoders
- 7.2.7.5 Variational Autoencoders
- 7.3 Learning Paradigms
- 7.3.1 Transfer Learning
- 7.3.2 Semi-Supervised Learning
- 7.3.3 Reinforcement Learning
- 7.3.4 Active Learning
- 7.3.5 Multitask Learning
- 7.4 Application of DL in Remote Sensing
- 7.4.1 Semantic Segmentation
- 7.4.2 Object Detection
- 7.4.3 Scene Classification
- 7.4.4 Change Detection
- 7.5 Concluding Remarks
- References
- Chapter 8 Object-B ased Image Analysis
- 8.1 Clustering-Based Segmentation
- 8.1.1 Mean-Shift Algorithm
- 8.1.2 Superpixel Segmentation
- 8.2 Thresholding-Based Segmentation
- 8.3 Edge-Based Segmentation.
- 8.4 Watershed Segmentation
- 8.5 Region-Based Segmentation
- 8.5.1 Region Splitting and Merging
- 8.5.2 Region Growing
- 8.5.3 Multiresolution Segmentation
- 8.6 Hybrid Segmentation
- 8.7 Evaluation of Segmentation Quality
- 8.7.1 Supervised Approach
- 8.7.2 Unsupervised Approach
- 8.7.2.1 Estimation of the Scale Parameter
- 8.7.2.2 Global Score
- 8.7.2.3 Overall Goodness F-Measure
- 8.8 Concluding Remarks
- References
- Chapter 9 Hyperparameter Optimization
- 9.1 What Is Hyperparameter Optimization?
- 9.2 Hyperparameter Optimization Techniques
- 9.2.1 Model-Free Algorithms
- 9.2.1.1 Trial-and-Error (Manual Testing)
- 9.2.1.2 Grid Search
- 9.2.1.3 Random Search
- 9.2.2 Gradient-Based Optimization
- 9.2.3 Bayesian Optimization
- 9.2.4 Multifidelity Optimization
- 9.2.4.1 Successive Halving
- 9.2.4.2 Hyperband
- 9.2.5 Metaheuristic Algorithms
- 9.2.5.1 Genetic Algorithm
- 9.2.5.2 Particle Swarm Optimization
- 9.3 Challenges in Hyperparameter Optimization
- 9.4 Concluding Remarks
- References
- Chapter 10 Accuracy Assessment and Model Explainability
- 10.1 Accuracy Assessment
- 10.1.1 Sampling Scheme and Spatial Autocorrelation
- 10.1.2 Sample Size, Scale, and Spatial Variability
- 10.1.3 Adequacy of Training and Testing Data
- 10.1.4 Conventional Accuracy Analysis
- 10.1.5 Accuracy Analysis for Machine Learning
- 10.1.6 Fuzzy Accuracy Assessment
- 10.1.7 Object-Based Accuracy Assessment
- 10.2 Comparison of Thematic Maps
- 10.2.1 McNemar's Test
- 10.2.2 z-Test
- 10.2.3 Wilcoxon Signed-Ranks Test
- 10.2.4 5×2-Cross-Validation t-Test
- 10.2.5 Friedman Test
- 10.3 Explainability Methods
- 10.3.1 SHapley Additive exPlanations
- 10.3.2 Partial Dependence Plot
- 10.3.3 Pairwise Interaction Importance
- 10.3.4 Permutation-Based Feature Importance.
- 10.3.5 Local Interpretable Model-Agnostic Explanations (LIME).