Elementary Semiconductor Device Physics Understanding Energy Band Formation Using Circuit Theory

This book by two leading experts on integrated circuit design adopts an untraditional approach to introducing semiconductor devices to beginners. The authors use circuit theory to provide a digestible explanation of energy band theory and understanding of energy band diagrams.

Detalles Bibliográficos
Autor principal: Masu, Kazuya (-)
Otros Autores: Amakawa, Shuhei
Formato: Libro electrónico
Idioma:Inglés
Publicado: Milton : Taylor & Francis Group 2024.
Edición:1st ed
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009861840006719
Tabla de Contenidos:
  • Cover
  • Half Title
  • Endorsement Page
  • Title Page
  • Copyright Page
  • Dedication Page
  • Contents
  • Preface
  • Symbol Index
  • Chapter 1 Introduction
  • 1.1 WHAT ARE SEMICONDUCTOR DEVICES?
  • 1.2 CLASSIFICATION OF SOLIDS
  • 1.3 PROPERTIES OF SEMICONDUCTORS
  • 1.3.1 Arrangement of Atoms
  • 1.3.2 Intrinsic and Doped Semiconductors
  • 1.3.3 Carriers in Intrinsic Semiconductors
  • 1.3.4 Energy Band Formation
  • 1.3.5 Properties of Intrinsic Semiconductors
  • 1.3.6 Energy Band Diagrams
  • 1.3.7 n-Type and p-Type Semiconductors
  • 1.4 WHAT IS THE MOST ABUNDANT ARTIFACT ON EARTH?
  • 1.5 SUMMARY
  • 1.6 PROBLEMS
  • Chapter 2 Semiconductor Devices from a Circuit-Theoretic Standpoint
  • 2.1 LINEAR CIRCUIT ELEMENTS
  • 2.1.1 Linear Resistors
  • 2.1.2 Linear Capacitors
  • 2.1.3 Linear Inductors
  • 2.2 NONLINEAR CIRCUIT ELEMENTS
  • 2.2.1 Nonlinear Resistors
  • 2.2.2 Nonlinear Capacitors and Inductors
  • 2.3 TIME-INVARIANT AND TIME-VARYING CIRCUIT ELEMENTS
  • 2.4 MULTITERMINAL ELEMENTS AND CONTROLLED SOURCES
  • 2.5 TRANSISTORS
  • 2.6 CIRCUIT-THEORETIC POSITIONING OF SEMICONDUCTOR DEVICES
  • 2.7 SUMMARY
  • 2.8 PROBLEMS
  • Chapter 3 Waves in Periodic Structures
  • 3.1 ANALOGIES IN PHYSICS
  • 3.1.1 Commonality of Mathematical Structures
  • 3.1.2 Overview of the Chapter
  • 3.2 PROPERTIES OF PERIODIC NETWORKS
  • 3.2.1 Infinitely Long Ladder Networks
  • 3.2.2 Infinitely Long LC Ladders
  • 3.2.3 Lossless Transmission Lines
  • 3.2.4 Periodic Networks with a Finite Number of Repetitions
  • 3.2.5 Kronig-Penney Model
  • 3.3 DISPERSION RELATION AND PHASE AND GROUP VELOCITIES
  • 3.3.1 Dispersion Relation
  • 3.3.2 Phase Velocity and Group Velocity
  • 3.3.3 Calculation of the Dispersion Relation
  • 3.4 DISPERSION RELATION AND PROPERTIES OF SEMICONDUCTORS
  • 3.5 BRAGG REFLECTION
  • 3.6 SUMMARY
  • 3.7 PROBLEMS
  • Chapter 4 Physics of Semiconductors in Equilibrium.
  • 4.1 DENSITY OF STATES IN ENERGY BAND AND DISTRIBUTION FUNCTION
  • 4.2 CARRIER DENSITIES OF NONDEGENERATE SEMICONDUCTORS
  • 4.2.1 Electron Density
  • 4.2.2 Hole Density
  • 4.2.3 Product of Hole and Electron Densities
  • 4.2.4 Insulators
  • 4.2.5 Fermi Level of Intrinsic Semiconductors
  • 4.2.6 Carrier Density in Terms of Intrinsic Carrier Density
  • 4.3 FERMI LEVEL OF DOPED SEMICONDUCTORS
  • 4.3.1 Nondegenerately Doped Semiconductors
  • 4.3.2 Degenerate Semiconductors
  • 4.4 FERMI LEVEL AND CHEMICAL POTENTIAL
  • 4.4.1 Properties of Chemical Potential
  • 4.4.2 Chemical Potential in the Presence of an External Force
  • 4.5 SUMMARY
  • 4.6 PROBLEMS
  • Chapter 5 Carrier Dynamics in Semiconductors
  • 5.1 EQUILIBRIUM AND NONEQUILIBRIUM STATES, STEADY AND NONSTEADY STATES
  • 5.2 QUASI-FERMI LEVELS AND CARRIER DENSITIES
  • 5.2.1 Quasi-Chemical Potential
  • 5.2.2 Electron and Hole Quasi-Fermi Levels
  • 5.2.3 Nonequilibrium Carrier Densities
  • 5.2.4 Logarithmic Transform of Carrier Densities
  • 5.2.5 General Form of Nondegenerate Carrier Density Expressions
  • 5.3 QUASI-FERMI LEVELS AND CURRENT DENSITY
  • 5.3.1 Carrier Flux Density and Current Density
  • 5.3.2 Quasi-Fermi Level Gradient and Current Density
  • 5.3.3 Drift and Diffusion of Carriers
  • 5.4 ELECTRIC CONDUCTION DUE TO ELECTRIC FIELD
  • 5.4.1 Drift of Carriers
  • 5.4.2 Relationship between Mobility and Conductivity
  • 5.5 ELECTRIC CONDUCTION DUE TO CARRIER DIFFUSION
  • 5.5.1 Diffusion Current
  • 5.5.2 Einstein's Relation
  • 5.6 CARRIER GENERATION AND RECOMBINATION
  • 5.6.1 Direct Generation and Recombination
  • 5.6.2 Indirect Generation and Recombination
  • 5.6.3 Carrier Generation-Recombination Rates
  • 5.6.4 Minority Carrier Lifetime
  • 5.7 BASIC EQUATIONS FOR SEMICONDUCTOR DEVICES
  • 5.8 DIELECTRIC RELAXATION
  • 5.9 DEBYE LENGTH
  • Chapter 6 p-n Junctions
  • 6.1 WHAT IS A P-N JUNCTION?.
  • 6.2 CONTACT POTENTIAL
  • 6.2.1 What Is Contact Potential?
  • 6.2.2 Work Function and Electron Affinity
  • 6.2.3 Properties of Contact Potential
  • 6.3 FORMATION OF A P-N JUNCTION
  • 6.3.1 Contact between p-Type and n-Type Semiconductors
  • 6.3.2 p-n Junctions in Equilibrium
  • 6.3.3 Biased p-n Junctions
  • 6.4 QUALITATIVE DESCRIPTION OF RECTIFICATION
  • 6.5 ANALYSIS OF ABRUPT JUNCTIONS
  • 6.5.1 Zero-Bias Abrupt Junctions
  • 6.5.2 Biased Abrupt Junctions
  • 6.6 CAPACITANCE OF P-N JUNCTIONS
  • 6.6.1 Depletion Capacitance
  • 6.6.2 Diffusion Capacitance
  • 6.7 ONE-SIDED ABRUPT JUNCTIONS
  • 6.8 CURRENT-VOLTAGE CHARACTERISTICS OF P-N JUNCTIONS
  • 6.8.1 Equation of Current-Voltage Characteristics
  • 6.8.2 Derivation of Current-Voltage Characteristics
  • 6.8.3 Additional Notes on p-n Junctions
  • 6.9 READING ENERGY BAND DIAGRAMS OF P-N JUNCTIONS
  • 6.9.1 Bias Voltage Dependence
  • 6.9.2 Lifetime Dependence
  • Chapter 7 MOS Transistors
  • 7.1 MOSFET STRUCTURE AND BASIC CHARACTERISTICS
  • 7.1.1 Structure of MOSFETs
  • 7.1.2 Basic Characteristics of MOSFETs
  • 7.1.3 Outline of Analyzing MOSFETs
  • 7.2 MOS CAPACITOR
  • 7.2.1 Structure of MOS Capacitors
  • 7.2.2 Analysis of MOS Capacitors
  • 7.2.3 Classification of Surface Conditions of MOS Capacitors
  • 7.2.4 Surface Electron Density and Surface Potential
  • 7.2.5 Relation between Gate Voltage and Inversion Charge
  • 7.2.6 Relation between Gate Voltage and Surface Potential
  • 7.3 THREE-TERMINAL MOS STRUCTURES
  • 7.3.1 Back-Gate-Referenced Analysis
  • 7.3.2 Channel-Terminal-Referenced Analysis
  • 7.4 FOUR-TERMINAL MOSFET
  • 7.4.1 Back-Gate-Referenced Analysis
  • 7.4.2 Source-Referenced Analysis
  • 7.5 SCALING AND SHORT-CHANNEL MOSFETS
  • 7.5.1 MOSFET Scaling
  • 7.5.2 Short-Channel Effects
  • 7.6 SUMMARY
  • 7.7 PROBLEMS
  • Chapter 8 Appendix
  • A.1 MATRIX REPRESENTATIONS OF A TWO-PORT
  • A.1.1 ABCD-Matrix.
  • A.1.2 S-Matrix
  • A.2 NTH POWER OF UNIMODULAR MATRIX
  • Chapter 9 Solutions to Selected Problems
  • A.3.1 CHAPTER 1
  • A.3.2 CHAPTER 2
  • A.3.3 CHAPTER 3
  • A.3.4 CHAPTER 4
  • A.3.5 CHAPTER 5
  • A.3.6 CHAPTER 6
  • A.3.7 CHAPTER 7
  • References
  • Index.