Statistical shape analysis with applications in R
Otros Autores: | , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Chichester, West Sussex, England :
Wiley
2016.
|
Edición: | Second edition |
Colección: | Wiley series in probability and statistics.
THEi Wiley ebooks. |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009849135306719 |
Tabla de Contenidos:
- Intro
- Statistical Shape Analysis
- Contents
- Preface
- Preface to the first edition
- Acknowledgements for the first edition
- 1 Introduction
- 1.1 Definition and motivation
- 1.2 Landmarks
- 1.3 The shapes package in R
- 1.4 Practical applications
- 1.4.1 Biology: Mouse vertebrae
- 1.4.2 Image analysis: Postcode recognition
- 1.4.3 Biology: Macaque skulls
- 1.4.4 Chemistry: Steroid molecules
- 1.4.5 Medicine: Schizophrenia magnetic resonance images
- 1.4.6 Medicine and law: Fetal alcohol spectrum disorder
- 1.4.7 Pharmacy: DNA molecules
- 1.4.8 Biology: Great ape skulls
- 1.4.9 Bioinformatics: Protein matching
- 1.4.10 Particle science: Sand grains
- 1.4.11 Biology: Rat skull growth
- 1.4.12 Biology: Sooty mangabeys
- 1.4.13 Physiotherapy: Human movement data
- 1.4.14 Genetics: Electrophoretic gels
- 1.4.15 Medicine: Cortical surface shape
- 1.4.16 Geology: Microfossils
- 1.4.17 Geography: Central Place Theory
- 1.4.18 Archaeology: Alignments of standing stones
- 2 Size measures and shape coordinates
- 2.1 History
- 2.2 Size
- 2.2.1 Configuration space
- 2.2.2 Centroid size
- 2.2.3 Other size measures
- 2.3 Traditional shape coordinates
- 2.3.1 Angles
- 2.3.2 Ratios of lengths
- 2.3.3 Penrose coefficent
- 2.4 Bookstein shape coordinates
- 2.4.1 Planar landmarks
- 2.4.2 Bookstein-type coordinates for 3D data
- 2.5 Kendall's shape coordinates
- 2.6 Triangle shape coordinates
- 2.6.1 Bookstein coordinates for triangles
- 2.6.2 Kendall's spherical coordinates for triangles
- 2.6.3 Spherical projections
- 2.6.4 Watson's triangle coordinates
- 3 Manifolds, shape and size-and-shape
- 3.1 Riemannian manifolds
- 3.2 Shape
- 3.2.1 Ambient and quotient space
- 3.2.2 Rotation
- 3.2.3 Coincident and collinear points
- 3.2.4 Removing translation
- 3.2.5 Pre-shape
- 3.2.6 Shape
- 3.3 Size-and-shape.
- 3.4 Reflection invariance
- 3.5 Discussion
- 3.5.1 Standardizations
- 3.5.2 Over-dimensioned case
- 3.5.3 Hierarchies
- 4 Shape space
- 4.1 Shape space distances
- 4.1.1 Procrustes distances
- 4.1.2 Procrustes
- 4.1.3 Differential geometry
- 4.1.4 Riemannian distance
- 4.1.5 Minimal geodesics in shape space
- 4.1.6 Planar shape
- 4.1.7 Curvature
- 4.2 Comparing shape distances
- 4.2.1 Relationships
- 4.2.2 Shape distances in R
- 4.2.3 Further discussion
- 4.3 Planar case
- 4.3.1 Complex arithmetic
- 4.3.2 Complex projective space
- 4.3.3 Kent's polar pre-shape coordinates
- 4.3.4 Triangle case
- 4.4 Tangent space coordinates
- 4.4.1 Tangent spaces
- 4.4.2 Procrustes tangent coordinates
- 4.4.3 Planar Procrustes tangent coordinates
- 4.4.4 Higher dimensional Procrustes tangent coordinates
- 4.4.5 Inverse exponential map tangent coordinates
- 4.4.6 Procrustes residuals
- 4.4.7 Other tangent coordinates
- 4.4.8 Tangent space coordinates in R
- 5 Size-and-shape space
- 5.1 Introduction
- 5.2 Root mean square deviation measures
- 5.3 Geometry
- 5.4 Tangent coordinates for size-and-shape space
- 5.5 Geodesics
- 5.6 Size-and-shape coordinates
- 5.6.1 Bookstein-type coordinates for size-and-shape analysis
- 5.6.2 Goodall-Mardia QR size-and-shape coordinates
- 5.7 Allometry
- 6 Manifold means
- 6.1 Intrinsic and extrinsic means
- 6.2 Population mean shapes
- 6.3 Sample mean shape
- 6.4 Comparing mean shapes
- 6.5 Calculation of mean shapes in R
- 6.6 Shape of the means
- 6.7 Means in size-and-shape space
- 6.7.1 Fréchet and Karcher means
- 6.7.2 Size-and-shape of the means
- 6.8 Principal geodesic mean
- 6.9 Riemannian barycentres
- 7 Procrustes analysis
- 7.1 Introduction
- 7.2 Ordinary Procrustes analysis
- 7.2.1 Full OPA
- 7.2.2 OPA in R
- 7.2.3 Ordinary partial Procrustes.
- 7.2.4 Reflection Procrustes
- 7.3 Generalized Procrustes analysis
- 7.3.1 Introduction
- 7.4 Generalized Procrustes algorithms for shape analysis
- 7.4.1 Algorithm: GPA-Shape-1
- 7.4.2 Algorithm: GPA-Shape-2
- 7.4.3 GPA in R
- 7.5 Generalized Procrustes algorithms for size-and-shape analysis
- 7.5.1 Algorithm: GPA-Size-and-Shape-1
- 7.5.2 Algorithm: GPA-Size-and-Shape-2
- 7.5.3 Partial GPA in R
- 7.5.4 Reflection GPA in R
- 7.6 Variants of generalized Procrustes analysis
- 7.6.1 Summary
- 7.6.2 Unit size partial Procrustes
- 7.6.3 Weighted Procrustes analysis
- 7.7 Shape variability: principal component analysis
- 7.7.1 Shape PCA
- 7.7.2 Kent's shape PCA
- 7.7.3 Shape PCA in R
- 7.7.4 Point distribution models
- 7.7.5 PCA in shape analysis and multivariate analysis
- 7.8 Principal component analysis for size-and-shape
- 7.9 Canonical variate analysis
- 7.10 Discriminant analysis
- 7.11 Independent component analysis
- 7.12 Bilateral symmetry
- 8 2D Procrustes analysis using complex arithmetic
- 8.1 Introduction
- 8.2 Shape distance and Procrustes matching
- 8.3 Estimation of mean shape
- 8.4 Planar shape analysis in R
- 8.5 Shape variability
- 9 Tangent space inference
- 9.1 Tangent space small variability inference for mean shapes
- 9.1.1 One sample Hotelling's test
- 9.1.2 Two independent sample Hotelling's test
- 9.1.3 Permutation and bootstrap tests
- 9.1.4 Fast permutation and bootstrap tests
- 9.1.5 Extensions and regularization
- 9.2 Inference using Procrustes statistics under isotropy
- 9.2.1 One sample Goodall's test and perturbation model
- 9.2.2 Two independent sample Goodall's test
- 9.2.3 Further two sample tests
- 9.2.4 One way analysis of variance
- 9.3 Size-and-shape tests
- 9.3.1 Tests using Procrustes size-and-shape tangent space.
- 9.3.2 Case-study: Size-and-shape analysis and mutation
- 9.4 Edge-based shape coordinates
- 9.5 Investigating allometry
- 10 Shape and size-and-shape distributions
- 10.1 The uniform distribution
- 10.2 Complex Bingham distribution
- 10.2.1 The density
- 10.2.2 Relation to the complex normal distribution
- 10.2.3 Relation to real Bingham distribution
- 10.2.4 The normalizing constant
- 10.2.5 Properties
- 10.2.6 Inference
- 10.2.7 Approximations and computation
- 10.2.8 Relationship with the Fisher-von Mises distribution
- 10.2.9 Simulation
- 10.3 Complex Watson distribution
- 10.3.1 The density
- 10.3.2 Inference
- 10.3.3 Large concentrations
- 10.4 Complex angular central Gaussian distribution
- 10.5 Complex Bingham quartic distribution
- 10.6 A rotationally symmetric shape family
- 10.7 Other distributions
- 10.8 Bayesian inference
- 10.9 Size-and-shape distributions
- 10.9.1 Rotationally symmetric size-and-shape family
- 10.9.2 Central complex Gaussian distribution
- 10.10 Size-and-shape versus shape
- 11 Offset normal shape distributions
- 11.1 Introduction
- 11.1.1 Equal mean case in two dimensions
- 11.1.2 The isotropic case in two dimensions
- 11.1.3 The triangle case
- 11.1.4 Approximations: Large and small variations
- 11.1.5 Exact moments
- 11.1.6 Isotropy
- 11.2 Offset normal shape distributions with general covariances
- 11.2.1 The complex normal case
- 11.2.2 General covariances: Small variations
- 11.3 Inference for offset normal distributions
- 11.3.1 General MLE
- 11.3.2 Isotropic case
- 11.3.3 Exact isotropic MLE in R
- 11.3.4 EM algorithm and extensions
- 11.4 Practical inference
- 11.5 Offset normal size-and-shape distributions
- 11.5.1 The isotropic case
- 11.5.2 Inference using the offset normal size-and-shape model
- 11.6 Distributions for higher dimensions
- 11.6.1 Introduction.
- 11.6.2 QR decomposition
- 11.6.3 Size-and-shape distributions
- 11.6.4 Multivariate approach
- 11.6.5 Approximations
- 12 Deformations for size and shape change
- 12.1 Deformations
- 12.1.1 Introduction
- 12.1.2 Definition and desirable properties
- 12.1.3 D'Arcy Thompson's transformation grids
- 12.2 Affine transformations
- 12.2.1 Exact match
- 12.2.2 Least squares matching: Two objects
- 12.2.3 Least squares matching: Multiple objects
- 12.2.4 The triangle case: Bookstein's hyperbolic shape space
- 12.3 Pairs of thin-plate splines
- 12.3.1 Thin-plate splines
- 12.3.2 Transformation grids
- 12.3.3 Thin-plate splines in R
- 12.3.4 Principal and partial warp decompositions
- 12.3.5 PCA with non-Euclidean metrics
- 12.3.6 Relative warps
- 12.4 Alternative approaches and history
- 12.4.1 Early transformation grids
- 12.4.2 Finite element analysis
- 12.4.3 Biorthogonal grids
- 12.5 Kriging
- 12.5.1 Universal kriging
- 12.5.2 Deformations
- 12.5.3 Intrinsic kriging
- 12.5.4 Kriging with derivative constraints
- 12.5.5 Smoothed matching
- 12.6 Diffeomorphic transformations
- 13 Non-parametric inference and regression
- 13.1 Consistency
- 13.2 Uniqueness of intrinsic means
- 13.3 Non-parametric inference
- 13.3.1 Central limit theorems and non-parametric tests
- 13.3.2 M-estimators
- 13.4 Principal geodesics and shape curves
- 13.4.1 Tangent space methods and longitudinal data
- 13.4.2 Growth curve models for triangle shapes
- 13.4.3 Geodesic model
- 13.4.4 Principal geodesic analysis
- 13.4.5 Principal nested spheres and shape spaces
- 13.4.6 Unrolling and unwrapping
- 13.4.7 Manifold splines
- 13.5 Statistical shape change
- 13.5.1 Geometric components of shape change
- 13.5.2 Paired shape distributions
- 13.6 Robustness
- 13.7 Incomplete data
- 14 Unlabelled size-and-shape and shape analysis.
- 14.1 The Green-Mardia model.