Statistical shape analysis with applications in R

Detalles Bibliográficos
Otros Autores: Dryden, I. L. author (author), Mardia, K. V., author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Chichester, West Sussex, England : Wiley 2016.
Edición:Second edition
Colección:Wiley series in probability and statistics.
THEi Wiley ebooks.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009849135306719
Tabla de Contenidos:
  • Intro
  • Statistical Shape Analysis
  • Contents
  • Preface
  • Preface to the first edition
  • Acknowledgements for the first edition
  • 1 Introduction
  • 1.1 Definition and motivation
  • 1.2 Landmarks
  • 1.3 The shapes package in R
  • 1.4 Practical applications
  • 1.4.1 Biology: Mouse vertebrae
  • 1.4.2 Image analysis: Postcode recognition
  • 1.4.3 Biology: Macaque skulls
  • 1.4.4 Chemistry: Steroid molecules
  • 1.4.5 Medicine: Schizophrenia magnetic resonance images
  • 1.4.6 Medicine and law: Fetal alcohol spectrum disorder
  • 1.4.7 Pharmacy: DNA molecules
  • 1.4.8 Biology: Great ape skulls
  • 1.4.9 Bioinformatics: Protein matching
  • 1.4.10 Particle science: Sand grains
  • 1.4.11 Biology: Rat skull growth
  • 1.4.12 Biology: Sooty mangabeys
  • 1.4.13 Physiotherapy: Human movement data
  • 1.4.14 Genetics: Electrophoretic gels
  • 1.4.15 Medicine: Cortical surface shape
  • 1.4.16 Geology: Microfossils
  • 1.4.17 Geography: Central Place Theory
  • 1.4.18 Archaeology: Alignments of standing stones
  • 2 Size measures and shape coordinates
  • 2.1 History
  • 2.2 Size
  • 2.2.1 Configuration space
  • 2.2.2 Centroid size
  • 2.2.3 Other size measures
  • 2.3 Traditional shape coordinates
  • 2.3.1 Angles
  • 2.3.2 Ratios of lengths
  • 2.3.3 Penrose coefficent
  • 2.4 Bookstein shape coordinates
  • 2.4.1 Planar landmarks
  • 2.4.2 Bookstein-type coordinates for 3D data
  • 2.5 Kendall's shape coordinates
  • 2.6 Triangle shape coordinates
  • 2.6.1 Bookstein coordinates for triangles
  • 2.6.2 Kendall's spherical coordinates for triangles
  • 2.6.3 Spherical projections
  • 2.6.4 Watson's triangle coordinates
  • 3 Manifolds, shape and size-and-shape
  • 3.1 Riemannian manifolds
  • 3.2 Shape
  • 3.2.1 Ambient and quotient space
  • 3.2.2 Rotation
  • 3.2.3 Coincident and collinear points
  • 3.2.4 Removing translation
  • 3.2.5 Pre-shape
  • 3.2.6 Shape
  • 3.3 Size-and-shape.
  • 3.4 Reflection invariance
  • 3.5 Discussion
  • 3.5.1 Standardizations
  • 3.5.2 Over-dimensioned case
  • 3.5.3 Hierarchies
  • 4 Shape space
  • 4.1 Shape space distances
  • 4.1.1 Procrustes distances
  • 4.1.2 Procrustes
  • 4.1.3 Differential geometry
  • 4.1.4 Riemannian distance
  • 4.1.5 Minimal geodesics in shape space
  • 4.1.6 Planar shape
  • 4.1.7 Curvature
  • 4.2 Comparing shape distances
  • 4.2.1 Relationships
  • 4.2.2 Shape distances in R
  • 4.2.3 Further discussion
  • 4.3 Planar case
  • 4.3.1 Complex arithmetic
  • 4.3.2 Complex projective space
  • 4.3.3 Kent's polar pre-shape coordinates
  • 4.3.4 Triangle case
  • 4.4 Tangent space coordinates
  • 4.4.1 Tangent spaces
  • 4.4.2 Procrustes tangent coordinates
  • 4.4.3 Planar Procrustes tangent coordinates
  • 4.4.4 Higher dimensional Procrustes tangent coordinates
  • 4.4.5 Inverse exponential map tangent coordinates
  • 4.4.6 Procrustes residuals
  • 4.4.7 Other tangent coordinates
  • 4.4.8 Tangent space coordinates in R
  • 5 Size-and-shape space
  • 5.1 Introduction
  • 5.2 Root mean square deviation measures
  • 5.3 Geometry
  • 5.4 Tangent coordinates for size-and-shape space
  • 5.5 Geodesics
  • 5.6 Size-and-shape coordinates
  • 5.6.1 Bookstein-type coordinates for size-and-shape analysis
  • 5.6.2 Goodall-Mardia QR size-and-shape coordinates
  • 5.7 Allometry
  • 6 Manifold means
  • 6.1 Intrinsic and extrinsic means
  • 6.2 Population mean shapes
  • 6.3 Sample mean shape
  • 6.4 Comparing mean shapes
  • 6.5 Calculation of mean shapes in R
  • 6.6 Shape of the means
  • 6.7 Means in size-and-shape space
  • 6.7.1 Fréchet and Karcher means
  • 6.7.2 Size-and-shape of the means
  • 6.8 Principal geodesic mean
  • 6.9 Riemannian barycentres
  • 7 Procrustes analysis
  • 7.1 Introduction
  • 7.2 Ordinary Procrustes analysis
  • 7.2.1 Full OPA
  • 7.2.2 OPA in R
  • 7.2.3 Ordinary partial Procrustes.
  • 7.2.4 Reflection Procrustes
  • 7.3 Generalized Procrustes analysis
  • 7.3.1 Introduction
  • 7.4 Generalized Procrustes algorithms for shape analysis
  • 7.4.1 Algorithm: GPA-Shape-1
  • 7.4.2 Algorithm: GPA-Shape-2
  • 7.4.3 GPA in R
  • 7.5 Generalized Procrustes algorithms for size-and-shape analysis
  • 7.5.1 Algorithm: GPA-Size-and-Shape-1
  • 7.5.2 Algorithm: GPA-Size-and-Shape-2
  • 7.5.3 Partial GPA in R
  • 7.5.4 Reflection GPA in R
  • 7.6 Variants of generalized Procrustes analysis
  • 7.6.1 Summary
  • 7.6.2 Unit size partial Procrustes
  • 7.6.3 Weighted Procrustes analysis
  • 7.7 Shape variability: principal component analysis
  • 7.7.1 Shape PCA
  • 7.7.2 Kent's shape PCA
  • 7.7.3 Shape PCA in R
  • 7.7.4 Point distribution models
  • 7.7.5 PCA in shape analysis and multivariate analysis
  • 7.8 Principal component analysis for size-and-shape
  • 7.9 Canonical variate analysis
  • 7.10 Discriminant analysis
  • 7.11 Independent component analysis
  • 7.12 Bilateral symmetry
  • 8 2D Procrustes analysis using complex arithmetic
  • 8.1 Introduction
  • 8.2 Shape distance and Procrustes matching
  • 8.3 Estimation of mean shape
  • 8.4 Planar shape analysis in R
  • 8.5 Shape variability
  • 9 Tangent space inference
  • 9.1 Tangent space small variability inference for mean shapes
  • 9.1.1 One sample Hotelling's test
  • 9.1.2 Two independent sample Hotelling's test
  • 9.1.3 Permutation and bootstrap tests
  • 9.1.4 Fast permutation and bootstrap tests
  • 9.1.5 Extensions and regularization
  • 9.2 Inference using Procrustes statistics under isotropy
  • 9.2.1 One sample Goodall's test and perturbation model
  • 9.2.2 Two independent sample Goodall's test
  • 9.2.3 Further two sample tests
  • 9.2.4 One way analysis of variance
  • 9.3 Size-and-shape tests
  • 9.3.1 Tests using Procrustes size-and-shape tangent space.
  • 9.3.2 Case-study: Size-and-shape analysis and mutation
  • 9.4 Edge-based shape coordinates
  • 9.5 Investigating allometry
  • 10 Shape and size-and-shape distributions
  • 10.1 The uniform distribution
  • 10.2 Complex Bingham distribution
  • 10.2.1 The density
  • 10.2.2 Relation to the complex normal distribution
  • 10.2.3 Relation to real Bingham distribution
  • 10.2.4 The normalizing constant
  • 10.2.5 Properties
  • 10.2.6 Inference
  • 10.2.7 Approximations and computation
  • 10.2.8 Relationship with the Fisher-von Mises distribution
  • 10.2.9 Simulation
  • 10.3 Complex Watson distribution
  • 10.3.1 The density
  • 10.3.2 Inference
  • 10.3.3 Large concentrations
  • 10.4 Complex angular central Gaussian distribution
  • 10.5 Complex Bingham quartic distribution
  • 10.6 A rotationally symmetric shape family
  • 10.7 Other distributions
  • 10.8 Bayesian inference
  • 10.9 Size-and-shape distributions
  • 10.9.1 Rotationally symmetric size-and-shape family
  • 10.9.2 Central complex Gaussian distribution
  • 10.10 Size-and-shape versus shape
  • 11 Offset normal shape distributions
  • 11.1 Introduction
  • 11.1.1 Equal mean case in two dimensions
  • 11.1.2 The isotropic case in two dimensions
  • 11.1.3 The triangle case
  • 11.1.4 Approximations: Large and small variations
  • 11.1.5 Exact moments
  • 11.1.6 Isotropy
  • 11.2 Offset normal shape distributions with general covariances
  • 11.2.1 The complex normal case
  • 11.2.2 General covariances: Small variations
  • 11.3 Inference for offset normal distributions
  • 11.3.1 General MLE
  • 11.3.2 Isotropic case
  • 11.3.3 Exact isotropic MLE in R
  • 11.3.4 EM algorithm and extensions
  • 11.4 Practical inference
  • 11.5 Offset normal size-and-shape distributions
  • 11.5.1 The isotropic case
  • 11.5.2 Inference using the offset normal size-and-shape model
  • 11.6 Distributions for higher dimensions
  • 11.6.1 Introduction.
  • 11.6.2 QR decomposition
  • 11.6.3 Size-and-shape distributions
  • 11.6.4 Multivariate approach
  • 11.6.5 Approximations
  • 12 Deformations for size and shape change
  • 12.1 Deformations
  • 12.1.1 Introduction
  • 12.1.2 Definition and desirable properties
  • 12.1.3 D'Arcy Thompson's transformation grids
  • 12.2 Affine transformations
  • 12.2.1 Exact match
  • 12.2.2 Least squares matching: Two objects
  • 12.2.3 Least squares matching: Multiple objects
  • 12.2.4 The triangle case: Bookstein's hyperbolic shape space
  • 12.3 Pairs of thin-plate splines
  • 12.3.1 Thin-plate splines
  • 12.3.2 Transformation grids
  • 12.3.3 Thin-plate splines in R
  • 12.3.4 Principal and partial warp decompositions
  • 12.3.5 PCA with non-Euclidean metrics
  • 12.3.6 Relative warps
  • 12.4 Alternative approaches and history
  • 12.4.1 Early transformation grids
  • 12.4.2 Finite element analysis
  • 12.4.3 Biorthogonal grids
  • 12.5 Kriging
  • 12.5.1 Universal kriging
  • 12.5.2 Deformations
  • 12.5.3 Intrinsic kriging
  • 12.5.4 Kriging with derivative constraints
  • 12.5.5 Smoothed matching
  • 12.6 Diffeomorphic transformations
  • 13 Non-parametric inference and regression
  • 13.1 Consistency
  • 13.2 Uniqueness of intrinsic means
  • 13.3 Non-parametric inference
  • 13.3.1 Central limit theorems and non-parametric tests
  • 13.3.2 M-estimators
  • 13.4 Principal geodesics and shape curves
  • 13.4.1 Tangent space methods and longitudinal data
  • 13.4.2 Growth curve models for triangle shapes
  • 13.4.3 Geodesic model
  • 13.4.4 Principal geodesic analysis
  • 13.4.5 Principal nested spheres and shape spaces
  • 13.4.6 Unrolling and unwrapping
  • 13.4.7 Manifold splines
  • 13.5 Statistical shape change
  • 13.5.1 Geometric components of shape change
  • 13.5.2 Paired shape distributions
  • 13.6 Robustness
  • 13.7 Incomplete data
  • 14 Unlabelled size-and-shape and shape analysis.
  • 14.1 The Green-Mardia model.