Data mining algorithms explained using R
"This book narrows down the scope of data mining by adopting a heavily modeling-oriented perspective"--
Other Authors: | |
---|---|
Format: | eBook |
Language: | Inglés |
Published: |
Chichester, England :
Wiley
2015.
|
Edition: | 1st ed |
Subjects: | |
See on Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009849128506719 |
Table of Contents:
- Part I. Preliminaries
- 1. Tasks
- 2. Basic statistics
- Part II. Classification
- 3. Decision trees
- 4. Naèive Bayes classifier
- 5. Linear classification
- 6. Misclassification costs
- 7. Classification model evaluation
- Part III. Regression
- 8. Linear regression
- 9. Regression trees
- 10. Regression model evaluation
- Part IV. Clustering
- 11. (Dis)similarity measures
- 12. k-Centers clustering
- 13. Hierarchical clustering
- 14. Clustering model evaluation
- Part V. Getting better models
- 15. Model ensembles
- 16. Kernel methods
- 17. Attribute transformation
- 18. Discretization
- 19. Attribute selection.