Advanced graph theory and combinatorics
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
London, England ; Hoboken, New Jersey :
ISTE
2016.
|
Edición: | 1st ed |
Colección: | Computer engineering series (London, England)
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009849126106719 |
Tabla de Contenidos:
- Intro
- Table of Contents
- Dedication
- Title
- Copyright
- Foreword
- Introduction
- 1 A First Encounter with Graphs
- 1.1. A few definitions
- 1.2. Paths and connected components
- 1.3. Eulerian graphs
- 1.4. Defining Hamiltonian graphs
- 1.5. Distance and shortest path
- 1.6. A few applications
- 1.7. Comments
- 1.8. Exercises
- 2 A Glimpse at Complexity Theory
- 2.1. Some complexity classes
- 2.2. Polynomial reductions
- 2.3. More hard problems in graph theory
- 3 Hamiltonian Graphs
- 3.1. A necessary condition
- 3.2. A theorem of Dirac
- 3.3. A theorem of Ore and the closure of a graph
- 3.4. Chvátal's condition on degrees
- 3.5. Partition of Kn into Hamiltonian circuits
- 3.6. De Bruijn graphs and magic tricks
- 3.7. Exercises
- 4 Topological Sort and Graph Traversals
- 4.1. Trees
- 4.2. Acyclic graphs
- 4.3. Exercises
- 5 Building New Graphs from Old Ones
- 5.1. Some natural transformations
- 5.2. Products
- 5.3. Quotients
- 5.4. Counting spanning trees
- 5.5. Unraveling
- 5.6. Exercises
- 6 Planar Graphs
- 6.1. Formal definitions
- 6.2. Euler's formula
- 6.3. Steinitz' theorem
- 6.4. About the four-color theorem
- 6.5. The five-color theorem
- 6.6. From Kuratowski's theorem to minors
- 6.7. Exercises
- 7 Colorings
- 7.1. Homomorphisms of graphs
- 7.2. A digression: isomorphisms and labeled vertices
- 7.3. Link with colorings
- 7.4. Chromatic number and chromatic polynomial
- 7.5. Ramsey numbers
- 7.6. Exercises
- 8 Algebraic Graph Theory
- 8.1. Prerequisites
- 8.2. Adjacency matrix
- 8.3. Playing with linear recurrences
- 8.4. Interpretation of the coefficients
- 8.5. A theorem of Hoffman
- 8.6. Counting directed spanning trees
- 8.7. Comments
- 8.8. Exercises
- 9 Perron-Frobenius Theory
- 9.1. Primitive graphs and Perron's theorem
- 9.2. Irreducible graphs.
- 9.3. Applications
- 9.4. Asymptotic properties
- 9.5. The case of polynomial growth
- 9.6. Exercises
- 10 Google's Page Rank
- 10.1. Defining the Google matrix
- 10.2. Harvesting the primitivity of the Google matrix
- 10.3. Computation
- 10.4. Probabilistic interpretation
- 10.5. Dependence on the parameter α
- 10.6. Comments
- Bibliography
- Index
- End User Licence Agreement.