Classification, parameter estimation, and state estimation an engineering approach using MATLAB
Autor principal: | |
---|---|
Otros Autores: | |
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Hoboken, New Jersey :
Wiley
2017.
|
Edición: | Second edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009849122306719 |
Tabla de Contenidos:
- Intro
- Classification, Parameter Estimation and State Estimation
- Contents
- Preface
- Acknowledgements
- About the Companion Website
- 1 Introduction
- 1.1 The Scope of the Book
- 1.1.1 Classification
- 1.1.2 Parameter Estimation
- 1.1.3 State Estimation
- 1.1.4 Relations between the Subjects
- 1.2 Engineering
- 1.3 The Organization of the Book
- 1.4 Changes from First Edition
- 1.5 References
- 2 PRTools Introduction
- 2.1 Motivation
- 2.2 Essential Concepts
- 2.3 PRTools Organization Structure and Implementation
- 2.4 Some Details about PRTools
- 2.4.1 Datasets
- 2.4.2 Datafiles
- 2.4.3 Datafiles Help Information
- 2.4.4 Classifiers and Mappings
- 2.4.5 Mappings Help Information
- 2.4.6 How to Write Your Own Mapping
- 2.5 Selected Bibliography
- 3 Detection and Classification
- 3.1 Bayesian Classification
- 3.1.1 Uniform Cost Function and Minimum Error Rate
- 3.1.2 Normal Distributed Measurements
- Linear and Quadratic Classifiers
- 3.2 Rejection
- 3.2.1 Minimum Error Rate Classification with Reject Option
- 3.3 Detection: The Two-Class Case
- 3.4 Selected Bibliography
- 4 Parameter Estimation
- 4.1 Bayesian Estimation
- 4.1.1 MMSE Estimation
- 4.1.2 MAP Estimation
- 4.1.3 The Gaussian Case with Linear Sensors
- 4.1.4 Maximum Likelihood Estimation
- 4.1.5 Unbiased Linear MMSE Estimation
- 4.2 Performance Estimators
- 4.2.1 Bias and Covariance
- 4.2.2 The Error Covariance of the Unbiased Linear MMSE Estimator
- 4.3 Data Fitting
- 4.3.1 Least Squares Fitting
- 4.3.2 Fitting Using a Robust Error Norm
- 4.3.3 Regression
- 4.4 Overview of the Family of Estimators
- 4.5 Selected Bibliography
- 5 State Estimation
- 5.1 A General Framework for Online Estimation
- 5.1.1 Models
- 5.1.2 Optimal Online Estimation
- 5.2 Infinite Discrete-Time State Variables.
- 5.2.1 Optimal Online Estimation in Linear-Gaussian Systems
- 5.2.2 Suboptimal Solutions for Non-linear Systems
- 5.3 Finite Discrete-Time State Variables
- 5.3.1 Hidden Markov Models
- 5.3.2 Online State Estimation
- 5.3.3 Offline State Estimation
- 5.4 Mixed States and the Particle Filter
- 5.4.1 Importance Sampling
- 5.4.2 Resampling by Selection
- 5.4.3 The Condensation Algorithm
- 5.5 Genetic State Estimation
- 5.5.1 The Genetic Algorithm
- 5.5.2 Genetic State Estimation
- 5.5.3 Computational Issues
- 5.6 State Estimation in Practice
- 5.6.1 System Identification
- 5.6.2 Observability, Controllability and Stability
- 5.6.3 Computational Issues
- 5.6.4 Consistency Checks
- 5.7 Selected Bibliography
- 6 Supervised Learning
- 6.1 Training Sets
- 6.2 Parametric Learning
- 6.2.1 Gaussian Distribution, Mean Unknown
- 6.2.2 Gaussian Distribution, Covariance Matrix Unknown
- 6.2.3 Gaussian Distribution, Mean and Covariance Matrix Both Unknown
- 6.2.4 Estimation of the Prior Probabilities
- 6.2.5 Binary Measurements
- 6.3 Non-parametric Learning
- 6.3.1 Parzen Estimation and Histogramming
- 6.3.2 Nearest Neighbour Classification
- 6.3.3 Linear Discriminant Functions
- 6.3.4 The Support Vector Classifier
- 6.3.5 The Feedforward Neural Network
- 6.4 Adaptive Boosting - Adaboost
- 6.5 Convolutional Neural Networks (CNNs)
- 6.5.1 Convolutional Neural Network Structure
- 6.5.2 Computation and Training of CNNs
- 6.6 Empirical Evaluation
- 6.7 Selected Bibliography
- 7 Feature Extraction and Selection
- 7.1 Criteria for Selection and Extraction
- 7.1.1 Interclass/Intraclass Distance
- 7.1.2 Chernoff-Bhattacharyya Distance
- 7.1.3 Other Criteria
- 7.2 Feature Selection
- 7.2.1 Branch-and-Bound
- 7.2.2 Suboptimal Search
- 7.2.3 Several New Methods of Feature Selection
- 7.2.4 Implementation Issues.
- 7.3 Linear Feature Extraction
- 7.3.1 Feature Extraction Based on the Bhattacharyya Distance with Gaussian Distributions
- 7.3.2 Feature Extraction Based on InterIntra Class Distance
- 7.4 References
- 8 Unsupervised Learning
- 8.1 Feature Reduction
- 8.1.1 Principal Component Analysis
- 8.1.2 Multidimensional Scaling
- 8.1.3 Kernel Principal Component Analysis
- 8.2 Clustering
- 8.2.1 Hierarchical Clustering
- 8.2.2 K-Means Clustering
- 8.2.3 Mixture of Gaussians
- 8.2.4 Mixture of probabilistic PCA
- 8.2.5 Self-Organizing Maps
- 8.2.6 Generative Topographic Mapping
- 8.3 References
- 9 Worked Out Examples
- 9.1 Example on Image Classification with PRTools
- 9.1.1 Example on Image Classification
- 9.1.2 Example on Face Classification
- 9.1.3 Example on Silhouette Classification
- 9.2 Boston Housing Classification Problem
- 9.2.1 Dataset Description
- 9.2.2 Simple Classification Methods
- 9.2.3 Feature Extraction
- 9.2.4 Feature Selection
- 9.2.5 Complex Classifiers
- 9.2.6 Conclusions
- 9.3 Time-of-Flight Estimation of an Acoustic Tone Burst
- 9.3.1 Models of the Observed Waveform
- 9.3.2 Heuristic Methods for Determining the ToF
- 9.3.3 Curve Fitting
- 9.3.4 Matched Filtering
- 9.3.5 ML Estimation Using Covariance Models for the Reflections
- 9.3.6 Optimization and Evaluation
- 9.4 Online Level Estimation in a Hydraulic System
- 9.4.1 Linearized Kalman Filte
- 9.4.2 Extended Kalman Filtering
- 9.4.3 Particle Filtering
- 9.4.4 Discussion
- 9.5 References
- Appendix A Topics Selected from Functional Analysis
- A.1 Linear Spaces
- A.1.1 Normed Linear Spaces
- A.1.2 Euclidean Spaces or Inner Product Spaces
- A.2 Metric Spaces
- A.3 Orthonormal Systems and Fourier Series
- A.4 Linear Operators
- A.5 Selected Bibliography
- Appendix B Topics Selected from Linear Algebra and Matrix Theory.
- B.1 Vectors and Matrices
- B.2 Convolution
- B.3 Trace and Determinant
- B.4 Differentiation of Vector and Matrix Functions
- B.5 Diagonalization of Self-Adjoint Matrices
- B.6 Singular Value Decomposition (SVD)
- B.7 Selected Bibliography
- Appendix C Probability Theory
- C.1 Probability Theory and Random Variables
- C.1.1 Moments
- C.1.2 Poisson Distribution
- C.1.3 Binomial Distribution
- C.1.4 Normal Distribution
- C.1.5 The Chi-Square Distribution
- C.2 Bivariate Random Variables
- C.3 Random Vectors
- C.3.1 Linear Operations on Gaussian Random Vectors
- C.3.2 Decorrelation
- C.4 Selected Bibliography
- Appendix D Discrete-Time Dynamic Systems
- D.1 Discrete-Time Dynamic Systems
- D.2 Linear Systems
- D.3 Linear Time-Invariant Systems
- D.3.1 Diagonalization of a System
- D.3.2 Stability
- D.4 Selected Bibliography
- Index
- EULA.