An introduction to analysis of financial data with R

A complete set of statistical tools for beginning financial analysts from a leading authority Written by one of the leading experts on the topic, An Introduction to Analysis of Financial Data with R explores basic concepts of visualization of financial data. Through a fundamental balance between the...

Descripción completa

Detalles Bibliográficos
Otros Autores: Tsay, Ruey S., 1951- author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, New Jersey : Wiley 2013.
Edición:1st ed
Colección:Wiley series in probability and statistics.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009849114606719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Preface
  • 1: Financial Data and Their Properties
  • 1.1 Asset Returns
  • 1.2 Bond Yields and Prices
  • 1.3 Implied Volatility
  • 1.4 R Packages and Demonstrations
  • 1.4.1 Installation of R Packages
  • 1.4.2 The Quantmod Package
  • 1.4.3 Some Basic R Commands
  • 1.5 Examples of Financial Data
  • 1.6 Distributional Properties of Returns
  • 1.6.1 Review of Statistical Distributions and Their Moments
  • 1.7 Visualization of Financial Data
  • 1.8 Some Statistical Distributions
  • 1.8.1 Normal Distribution
  • 1.8.2 Lognormal Distribution
  • 1.8.3 Stable Distribution
  • 1.8.4 Scale Mixture of Normal Distributions
  • 1.8.5 Multivariate Returns
  • Exercises
  • References
  • 2: Linear Models for Financial Time Series
  • 2.1 Stationarity
  • 2.2 Correlation and Autocorrelation Function
  • 2.3 White Noise and Linear Time Series
  • 2.4 Simple Autoregressive Models
  • 2.4.1 Properties of AR Models
  • 2.4.2 Identifying Ar Models in Practice
  • 2.4.3 Goodness of Fit
  • 2.4.4 Forecasting
  • 2.5 Simple Moving Average Models
  • 2.5.1 Properties of MA Models
  • 2.5.2 Identifying MA Order
  • 2.5.3 Estimation
  • 2.5.4 Forecasting Using MA Models
  • 2.6 Simple Arma Models
  • 2.6.1 Properties of ARMA(1,1) Models
  • 2.6.2 General ARMA Models
  • 2.6.3 Identifying ARMA Models
  • 2.6.4 Forecasting Using an ARMA Model
  • 2.6.5 Three Model Representations for an ARMA Model
  • 2.7 Unit-root Nonstationarity
  • 2.7.1 Random Walk
  • 2.7.2 Random Walk with Drift
  • 2.7.3 Trend-stationary Time Series
  • 2.7.4 General Unit-root Nonstationary Models
  • 2.7.5 Unit-root Test
  • 2.8 Exponential Smoothing
  • 2.9 Seasonal Models
  • 2.9.1 Seasonal Differencing
  • 2.9.2 Multiplicative Seasonal Models
  • 2.9.3 Seasonal Dummy Variable
  • 2.10 Regression Models with Time Series Errors
  • 2.11 Long-memory Models.
  • 2.12 Model Comparison and Averaging
  • 2.12.1 In-sample Comparison
  • 2.12.2 Out-of-sample Comparison
  • 2.12.3 Model Averaging
  • Exercises
  • References
  • 3: Case Studies of Linear Time Series
  • 3.1 Weekly Regular Gasoline Price
  • 3.1.1 Pure Time Series Model
  • 3.1.2 Use of Crude Oil Prices
  • 3.1.3 Use of Lagged Crude Oil Prices
  • 3.1.4 Out-of-sample Predictions
  • 3.2 Global Temperature Anomalies
  • 3.2.1 Unit-root Stationarity
  • 3.2.2 Trend-nonstationarity
  • 3.2.3 Model Comparison
  • 3.2.4 Long-term Prediction
  • 3.2.5 Discussion
  • 3.3 Us Monthly Unemployment Rates
  • 3.3.1 Univariate Time Series Models
  • 3.3.2 An Alternative Model
  • 3.3.3 Model Comparison
  • 3.3.4 Use of Initial Jobless Claims
  • 3.3.5 Comparison
  • Exercises
  • References
  • 4: Asset Volatility and Volatility Models
  • 4.1 Characteristics of Volatility
  • 4.2 Structure of a Model
  • 4.3 Model Building
  • 4.4 Testing for ARCH Effect
  • 4.5 The Arch Model
  • 4.5.1 Properties of ARCH Models
  • 4.5.2 Advantages and Weaknesses of ARCH Models
  • 4.5.3 Building an ARCH Model
  • 4.5.4 Some Examples
  • 4.6 the Garch Model
  • 4.6.1 An Illustrative Example
  • 4.6.2 Forecasting Evaluation
  • 4.6.3 A Two-pass Estimation Method
  • 4.7 The Integrated Garch Model
  • 4.8 The Garch-M Model
  • 4.9 The Exponential Garch Model
  • 4.9.1 An Illustrative Example
  • 4.9.2 An Alternative Model Form
  • 4.9.3 Second Example
  • 4.9.4 Forecasting Using an EGARCH Model
  • 4.10 The Threshold Garch Model
  • 4.11 Asymmetric Power Arch Models
  • 4.12 Nonsymmetric Garch Model
  • 4.13 The Stochastic Volatility Model
  • 4.14 Long-memory Stochastic Volatility Models
  • 4.15 Alternative Approaches
  • 4.15.1 Use of High Frequency Data
  • 4.15.2 Use of Daily Open, High, Low, and Close Prices
  • Exercises
  • References
  • 5: Applications of Volatility Models
  • 5.1 Garch Volatility Term Structure.
  • 5.1.1 Term Structure
  • 5.2 Option Pricing and Hedging
  • 5.3 Time-varying Correlations and Betas
  • 5.3.1 Time-varying Betas
  • 5.4 Minimum Variance Portfolios
  • 5.5 Prediction
  • Exercises
  • References
  • 6: High Frequency Financial Data
  • 6.1 Nonsynchronous Trading
  • 6.2 Bid-ask Spread of Trading Prices
  • 6.3 Empirical Characteristics of Trading Data
  • 6.4 Models for Price Changes
  • 6.4.1 Ordered Probit Model
  • 6.4.2 a Decomposition Model
  • 6.5 Duration Models
  • 6.5.1 Diurnal Component
  • 6.5.2 The ACD Model
  • 6.5.3 Estimation
  • 6.6 Realized Volatility
  • 6.6.1 Handling Microstructure Noises
  • 6.6.2 Discussion
  • Appendix A: Some Probability Distributions
  • Appendix B: Hazard Function
  • Exercises
  • References
  • 7: Value at Risk
  • 7.1 Risk Measure and Coherence
  • 7.1.1 Value at Risk (VaR)
  • 7.1.2 Expected Shortfall
  • 7.2 Remarks on Calculating Risk Measures
  • 7.3 Riskmetrics
  • 7.3.1 Discussion
  • 7.3.2 Multiple Positions
  • 7.4 an Econometric Approach
  • 7.4.1 Multiple Periods
  • 7.5 Quantile Estimation
  • 7.5.1 Quantile and Order Statistics
  • 7.5.2 Quantile Regression
  • 7.6 Extreme Value Theory
  • 7.6.1 Review of Extreme Value Theory
  • 7.6.2 Empirical Estimation
  • 7.6.3 Application to Stock Returns
  • 7.7 an Extreme Value Approach to Var
  • 7.7.1 Discussion
  • 7.7.2 Multiperiod Var
  • 7.7.3 Return Level
  • 7.8 Peaks over Thresholds
  • 7.8.1 Statistical Theory
  • 7.8.2 Mean Excess Function
  • 7.8.3 Estimation
  • 7.8.4 An Alternative Parameterization
  • 7.9 The Stationary Loss Processes
  • Exercises
  • References
  • Index.