A course in statistics with R
Otros Autores: | , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Chichester, West Sussex :
John Wiley & Sons, Incorporated
2016.
|
Edición: | 1st ed |
Colección: | THEi Wiley ebooks.
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009849102406719 |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Dedication
- Contents
- List of Figures
- List of Tables
- Preface
- Acknowledgments
- Part I The Preliminaries
- Chapter 1 Why R?
- 1.1 Why R?
- 1.2 R Installation
- 1.3 There is Nothing such as PRACTICALS
- 1.4 Datasets in R and Internet
- 1.4.1 List of Web-sites containing DATASETS
- 1.4.2 Antique Datasets
- 1.5 http://cran.r-project.org
- 1.5.1 http://r-project.org
- 1.5.2 http://www.cran.r-project.org/web/views/
- 1.5.3 Is subscribing to R-Mailing List useful?
- 1.6 R and its Interface with other Software
- 1.7 help and/or?
- 1.8 R Books
- 1.9 A Road Map
- Chapter 2 The R Basics
- 2.1 Introduction
- 2.2 Simple Arithmetics and a Little Beyond
- 2.2.1 Absolute Values, Remainders, etc.
- 2.2.2 round, floor, etc.
- 2.2.3 Summary Functions
- 2.2.4 Trigonometric Functions
- 2.2.5 Complex Numbers
- 2.2.6 Special Mathematical Functions
- 2.3 Some Basic R Functions
- 2.3.1 Summary Statistics
- 2.3.2 is, as, is.na, etc.
- 2.3.3 factors, levels, etc.
- 2.3.4 Control Programming
- 2.3.5 Other Useful Functions
- 2.3.6 Calculus*
- 2.4 Vectors and Matrices in R
- 2.4.1 Vectors
- 2.4.2 Matrices
- 2.5 Data Entering and Reading from Files
- 2.5.1 Data Entering
- 2.5.2 Reading Data from External Files
- 2.6 Working with Packages
- 2.7 R Session Management
- 2.8 Further Reading
- 2.9 Complements, Problems, and Programs
- Chapter 3 Data Preparation and Other Tricks
- 3.1 Introduction
- 3.2 Manipulation with Complex Format Files
- 3.3 Reading Datasets of Foreign Formats
- 3.4 Displaying R Objects
- 3.5 Manipulation Using R Functions
- 3.6 Working with Time and Date
- 3.7 Text Manipulations
- 3.8 Scripts and Text Editors for R
- 3.8.1 Text Editors for Linuxians
- 3.9 Further Reading
- 3.10 Complements, Problems, and Programs
- Chapter 4 Exploratory Data Analysis.
- 4.1 Introduction: The Tukey's School of Statistics
- 4.2 Essential Summaries of EDA
- 4.3 Graphical Techniques in EDA
- 4.3.1 Boxplot
- 4.3.2 Histogram
- 4.3.3 Histogram Extensions and the Rootogram
- 4.3.4 Pareto Chart
- 4.3.5 Stem-and-Leaf Plot
- 4.3.6 Run Chart
- 4.3.7 Scatter Plot
- 4.4 Quantitative Techniques in EDA
- 4.4.1 Trimean
- 4.4.2 Letter Values
- 4.5 Exploratory Regression Models
- 4.5.1 Resistant Line
- 4.5.2 Median Polish
- 4.6 Further Reading
- 4.7 Complements, Problems, and Programs
- Part II Probability and Inference
- Chapter 5 Probability Theory
- 5.1 Introduction
- 5.2 Sample Space, Set Algebra, and Elementary Probability
- 5.3 Counting Methods
- 5.3.1 Sampling: The Diverse Ways
- 5.3.2 The Binomial Coefficients and the Pascals Triangle
- 5.3.3 Some Problems Based on Combinatorics
- 5.4 Probability: A Definition
- 5.4.1 The Prerequisites
- 5.4.2 The Kolmogorov Definition
- 5.5 Conditional Probability and Independence
- 5.6 Bayes Formula
- 5.7 Random Variables, Expectations, and Moments
- 5.7.1 The Definition
- 5.7.2 Expectation of Random Variables
- 5.8 Distribution Function, Characteristic Function, and Moment Generation Function
- 5.9 Inequalities
- 5.9.1 The Markov Inequality
- 5.9.2 The Jensen's Inequality
- 5.9.3 The Chebyshev Inequality
- 5.10 Convergence of Random Variables
- 5.10.1 Convergence in Distributions
- 5.10.2 Convergence in Probability
- 5.10.3 Convergence in rth Mean
- 5.10.4 Almost Sure Convergence
- 5.11 The Law of Large Numbers
- 5.11.1 The Weak Law of Large Numbers
- 5.12 The Central Limit Theorem
- 5.12.1 The de Moivre-Laplace Central Limit Theorem
- 5.12.2 CLT for iid Case
- 5.12.3 The Lindeberg-Feller CLT
- 5.12.4 The Liapounov CLT
- 5.13 Further Reading
- 5.13.1 Intuitive, Elementary, and First Course Source.
- 5.13.2 The Classics and Second Course Source
- 5.13.3 The Problem Books
- 5.13.4 Other Useful Sources
- 5.13.5 R for Probability
- 5.14 Complements, Problems, and Programs
- Chapter 6 Probability and Sampling Distributions
- 6.1 Introduction
- 6.2 Discrete Univariate Distributions
- 6.2.1 The Discrete Uniform Distribution
- 6.2.2 The Binomial Distribution
- 6.2.3 The Geometric Distribution
- 6.2.4 The Negative Binomial Distribution
- 6.2.5 Poisson Distribution
- 6.2.6 The Hypergeometric Distribution
- 6.3 Continuous Univariate Distributions
- 6.3.1 The Uniform Distribution
- 6.3.2 The Beta Distribution
- 6.3.3 The Exponential Distribution
- 6.3.4 The Gamma Distribution
- 6.3.5 The Normal Distribution
- 6.3.6 The Cauchy Distribution
- 6.3.7 The t-Distribution
- 6.3.8 The Chi-square Distribution
- 6.3.9 The F-Distribution
- 6.4 Multivariate Probability Distributions
- 6.4.1 The Multinomial Distribution
- 6.4.2 Dirichlet Distribution
- 6.4.3 The Multivariate Normal Distribution
- 6.4.4 The Multivariate t Distribution
- 6.5 Populations and Samples
- 6.6 Sampling from the Normal Distributions
- 6.7 Some Finer Aspects of Sampling Distributions
- 6.7.1 Sampling Distribution of Median
- 6.7.2 Sampling Distribution of Mean of Standard Distributions
- 6.8 Multivariate Sampling Distributions
- 6.8.1 Noncentral Univariate Chi-square, t, and F Distributions
- 6.8.2 Wishart Distribution
- 6.8.3 Hotellings T2 Distribution
- 6.9 Bayesian Sampling Distributions
- 6.10 Further Reading
- 6.11 Complements, Problems, and Programs
- Chapter 7 Parametric Inference
- 7.1 Introduction
- 7.2 Families of Distribution
- 7.2.1 The Exponential Family
- 7.2.2 Pitman Family
- 7.3 Loss Functions
- 7.4 Data Reduction
- 7.4.1 Sufficiency
- 7.4.2 Minimal Sufficiency
- 7.5 Likelihood and Information
- 7.5.1 The Likelihood Principle.
- 7.5.2 The Fisher Information
- 7.6 Point Estimation
- 7.6.1 Maximum Likelihood Estimation
- 7.6.2 Method of Moments Estimator
- 7.7 Comparison of Estimators
- 7.7.1 Unbiased Estimators
- 7.7.2 Improving Unbiased Estimators
- 7.8 Confidence Intervals
- 7.9 Testing Statistical Hypotheses-The Preliminaries
- 7.10 The Neyman-Pearson Lemma
- 7.11 Uniformly Most Powerful Tests
- 7.12 Uniformly Most Powerful Unbiased Tests
- 7.12.1 Tests for the Means: One- and Two-Sample t-Test
- 7.13 Likelihood Ratio Tests
- 7.13.1 Normal Distribution: One-Sample Problems
- 7.13.2 Normal Distribution: Two-Sample Problem for the Mean
- 7.14 Behrens-Fisher Problem
- 7.15 Multiple Comparison Tests
- 7.15.1 Bonferroni's Method
- 7.15.2 Holm's Method
- 7.16 The EM Algorithm*
- 7.16.1 Introduction
- 7.16.2 The Algorithm
- 7.16.3 Introductory Applications
- 7.17 Further Reading
- 7.17.1 Early Classics
- 7.17.2 Texts from the Last 30 Years
- 7.18 Complements, Problems, and Programs
- Chapter 8 Nonparametric Inference
- 8.1 Introduction
- 8.2 Empirical Distribution Function and Its Applications
- 8.2.1 Statistical Functionals
- 8.3 The Jackknife and Bootstrap Methods
- 8.3.1 The Jackknife
- 8.3.2 The Bootstrap
- 8.3.3 Bootstrapping Simple Linear Model*
- 8.4 Non-parametric Smoothing
- 8.4.1 Histogram Smoothing
- 8.4.2 Kernel Smoothing
- 8.4.3 Nonparametric Regression Models*
- 8.5 Non-parametric Tests
- 8.5.1 The Wilcoxon Signed-Ranks Test
- 8.5.2 The Mann-Whitney test
- 8.5.3 The Siegel-Tukey Test
- 8.5.4 The Wald-Wolfowitz Run Test
- 8.5.5 The Kolmogorov-Smirnov Test
- 8.5.6 Kruskal-Wallis Test*
- 8.6 Further Reading
- 8.7 Complements, Problems, and Programs
- Chapter 9 Bayesian Inference
- 9.1 Introduction
- 9.2 Bayesian Probabilities
- 9.3 The Bayesian Paradigm for Statistical Inference.
- 9.3.1 Bayesian Sufficiency and the Principle
- 9.3.2 Bayesian Analysis and Likelihood Principle
- 9.3.3 Informative and Conjugate Prior
- 9.3.4 Non-informative Prior
- 9.4 Bayesian Estimation
- 9.4.1 Inference for Binomial Distribution
- 9.4.2 Inference for the Poisson Distribution
- 9.4.3 Inference for Uniform Distribution
- 9.4.4 Inference for Exponential Distribution
- 9.4.5 Inference for Normal Distributions
- 9.5 The Credible Intervals
- 9.6 Bayes Factors for Testing Problems
- 9.7 Further Reading
- 9.8 Complements, Problems, and Programs
- Part III Stochastic Processes and Monte Carlo
- Chapter 10 Stochastic Processes
- 10.1 Introduction
- 10.2 Kolmogorov's Consistency Theorem
- 10.3 Markov Chains
- 10.3.1 The m-Step TPM
- 10.3.2 Classification of States
- 10.3.3 Canonical Decomposition of an Absorbing Markov Chain
- 10.3.4 Stationary Distribution and Mean First Passage Time of an Ergodic Markov Chain
- 10.3.5 Time Reversible Markov Chain
- 10.4 Application of Markov Chains in Computational Statistics
- 10.4.1 The Metropolis-Hastings Algorithm
- 10.4.2 Gibbs Sampler
- 10.4.3 Illustrative Examples
- 10.5 Further Reading
- 10.6 Complements, Problems, and Programs
- Chapter 11 Monte Carlo Computations
- 11.1 Introduction
- 11.2 Generating the (Pseudo-) Random Numbers
- 11.2.1 Useful Random Generators
- 11.2.2 Probability Through Simulation
- 11.3 Simulation from Probability Distributions and Some Limit Theorems
- 11.3.1 Simulation from Discrete Distributions
- 11.3.2 Simulation from Continuous Distributions
- 11.3.3 Understanding Limit Theorems through Simulation
- 11.3.4 Understanding The Central Limit Theorem
- 11.4 Monte Carlo Integration
- 11.5 The Accept-Reject Technique
- 11.6 Application to Bayesian Inference
- 11.7 Further Reading
- 11.8 Complements, Problems, and Programs.
- Part IV Linear Models.