Computer vision in vehicle technology land, sea & air
Otros Autores: | , , , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Chichester, West Sussex, United Kingdom :
John Wiley & Sons, Incorporated
2017.
|
Edición: | 1st ed |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009849100506719 |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- List of Contributors
- Preface
- Abbreviations and Acronyms
- Chapter 1 Computer Vision in Vehicles
- 1.1 Adaptive Computer Vision for Vehicles
- 1.1.1 Applications
- 1.1.2 Traffic Safety and Comfort
- 1.1.3 Strengths of (Computer) Vision
- 1.1.4 Generic and Specific Tasks
- 1.1.5 Multi-module Solutions
- 1.1.6 Accuracy, Precision, and Robustness
- 1.1.7 Comparative Performance Evaluation
- 1.1.8 There Are Many Winners
- 1.2 Notation and Basic Definitions
- 1.2.1 Images and Videos
- 1.2.2 Cameras
- 1.2.3 Optimization
- 1.3 Visual Tasks
- 1.3.1 Distance
- 1.3.2 Motion
- 1.3.3 Object Detection and Tracking
- 1.3.4 Semantic Segmentation
- 1.4 Concluding Remarks
- Acknowledgments
- Chapter 2 Autonomous Driving
- 2.1 Introduction
- 2.1.1 The Dream
- 2.1.2 Applications
- 2.1.3 Level of Automation
- 2.1.4 Important Research Projects
- 2.1.5 Outdoor Vision Challenges
- 2.2 Autonomous Driving in Cities
- 2.2.1 Localization
- 2.2.2 Stereo Vision-Based Perception in 3D
- 2.2.3 Object Recognition
- 2.3 Challenges
- 2.3.1 Increasing Robustness
- 2.3.2 Scene Labeling
- 2.3.3 Intention Recognition
- 2.4 Summary
- Acknowledgments
- Chapter 3 Computer Vision for MAVs
- 3.1 Introduction
- 3.2 System and Sensors
- 3.3 Ego-Motion Estimation
- 3.3.1 State Estimation Using Inertial and Vision Measurements
- 3.3.2 MAV Pose from Monocular Vision
- 3.3.3 MAV Pose from Stereo Vision
- 3.3.4 MAV Pose from Optical Flow Measurements
- 3.4 3D Mapping
- 3.5 Autonomous Navigation
- 3.6 Scene Interpretation
- 3.7 Concluding Remarks
- Chapter 4 Exploring the Seafloor with Underwater Robots
- 4.1 Introduction
- 4.2 Challenges of Underwater Imaging
- 4.3 Online Computer Vision Techniques
- 4.3.1 Dehazing
- 4.3.2 Visual Odometry
- 4.3.3 SLAM
- 4.3.4 Laser Scanning.
- 4.4 Acoustic Imaging Techniques
- 4.4.1 Image Formation
- 4.4.2 Online Techniques for Acoustic Processing
- 4.5 Concluding Remarks
- Acknowledgments
- Chapter 5 Vision-Based Advanced Driver Assistance Systems
- 5.1 Introduction
- 5.2 Forward Assistance
- 5.2.1 Adaptive Cruise Control (ACC) and Forward Collision Avoidance (FCA)
- 5.2.2 Traffic Sign Recognition (TSR)
- 5.2.3 Traffic Jam Assist (TJA)
- 5.2.4 Vulnerable Road User Protection
- 5.2.5 Intelligent Headlamp Control
- 5.2.6 Enhanced Night Vision (Dynamic Light Spot)
- 5.2.7 Intelligent Active Suspension
- 5.3 Lateral Assistance
- 5.3.1 Lane Departure Warning (LDW) and Lane Keeping System (LKS)
- 5.3.2 Lane Change Assistance (LCA)
- 5.3.3 Parking Assistance
- 5.4 Inside Assistance
- 5.4.1 Driver Monitoring and Drowsiness Detection
- 5.5 Conclusions and Future Challenges
- 5.5.1 Robustness
- 5.5.2 Cost
- Acknowledgments
- Chapter 6 Application Challenges from a Bird's-Eye View
- 6.1 Introduction to Micro Aerial Vehicles (MAVs)
- 6.1.1 Micro Aerial Vehicles (MAVs)
- 6.1.2 Rotorcraft MAVs
- 6.2 GPS-Denied Navigation
- 6.2.1 Autonomous Navigation with Range Sensors
- 6.2.2 Autonomous Navigation with Vision Sensors
- 6.2.3 SFLY: Swarm of Micro Flying Robots
- 6.2.4 SVO, a Visual-Odometry Algorithm for MAVs
- 6.3 Applications and Challenges
- 6.3.1 Applications
- 6.3.2 Safety and Robustness
- 6.4 Conclusions
- Chapter 7 Application Challenges of Underwater Vision
- 7.1 Introduction
- 7.2 Offline Computer Vision Techniques for Underwater Mapping and Inspection
- 7.2.1 2D Mosaicing
- 7.2.2 2.5D Mapping
- 7.2.3 3D Mapping
- 7.2.4 Machine Learning for Seafloor Classification
- 7.3 Acoustic Mapping Techniques
- 7.4 Concluding Remarks
- Chapter 8 Closing Notes
- References
- Index
- EULA.