Indoor wireless communications from theory to implementation
Indoor Wireless Communications: From Theory to Implementation provides an in-depth reference for design engineers, system planners and post graduate students interested in the vastly popular field of indoor wireless communications. It contains wireless applications and services for in-building scena...
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Hoboken, New Jersey :
John Wiley & Sons, Ltd
[2017]
|
Edición: | First edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009849099706719 |
Tabla de Contenidos:
- -- Preface xix
- 1 Introduction 1
- 1.1 Motivation 1
- 1.2 Evolution of Macro to Heterogeneous Networks 2
- 1.3 Challenges 3
- 1.4 Structure of the Book 4
- References 5
- 2 Indoor Wireless Technologies 7
- 2.1 Cellular 7
- 2.1.1 The Cellular Concept 8
- 2.1.2 GSM 9
- 2.1.3 UMTS 11
- 2.1.4 HSPA 12
- 2.1.5 LTE 13
- 2.2 Wi-Fi 14
- 2.2.1 History 14
- 2.2.2 Medium Access Control (MAC) Sublayer 16
- 2.2.3 Physical Layer 17
- 2.2.4 Industry Bodies 17
- 2.2.4.1 Wi-Fi Alliance 17
- 2.2.4.2 IEEE 802.11 17
- 2.2.4.3 The Wireless Broadband Alliance 17
- 2.2.5 Wi-Fi Standards 18
- 2.2.5.1 IEEE 802.11-1997 18
- 2.2.5.2 IEEE 802.11a 18
- 2.2.5.3 IEEE 802.11b 18
- 2.2.5.4 IEEE 802.11g 18
- 2.2.5.5 IEEE 802.11-2007 18
- 2.2.5.6 IEEE 802.11n 18
- 2.2.6 Spectrum 19
- 2.2.6.1 2.4 GHz Band 19
- 2.2.6.2 5 GHz Band 20
- 2.2.7 Modulation Schemes Used in Wi-Fi 21
- 2.2.8 Multiple Access (MA) Techniques 21
- 2.2.8.1 Frequency-Hopping Spread Spectrum (FHSS) 21
- 2.2.8.2 Direct Sequence Spread Spectrum (DSSS) 22
- 2.2.8.3 Orthogonal Frequency Division Multiplexing (OFDM) 23
- 2.2.9 Power Levels 24
- 2.2.10 Performance Indicators 25
- 2.2.11 Target Signal Levels and Link Budgets 25
- 2.2.12 Interference Challenges 29
- 2.2.13 Channel Planning 29
- 2.2.13.1 Single-Floor and Vertical Channel Planning 30
- 2.2.13.2 Multichannel Access Points 31
- 2.2.13.3 Automated Planning 31
- 2.2.14 Mobility Issues 31
- 2.2.14.1 Layer 2 Roam 32
- 2.2.14.2 Layer 3 Roam 32
- 2.3 Bluetooth 33
- 2.4 ZigBee 36
- 2.5 Radio Frequency Identification (RFID) 37
- 2.6 Private Mobile Radio (PMR) 39
- 2.6.1 PMR Elements 40
- 2.6.2 Attributes 40
- 2.6.3 TETRA 41
- 2.7 Digital Enhanced Cordless Telecommunications (DECT) 42
- References 44
- 3 System Requirements 45
- 3.1 Environments 45
- 3.1.1 Corporate Buildings 46
- 3.1.2 Airports 47
- 3.1.3 Trains and Railway Stations 50
- 3.1.4 Shopping Centres 52
- 3.1.5 Hospitals 53
- 3.1.6 Arenas and Stadiums 54
- 3.1.6.1 What Makes a Stadium so Special? 56.
- 3.1.6.2 Mix of Communities with Different Needs 56
- 3.1.7 University Campuses 57
- 3.1.8 Underground Stations 59
- 3.1.9 Cinemas and Theatres 60
- 3.1.10 Hotels 60
- 3.1.11 Cruise Ships 62
- 3.2 Coverage 62
- 3.2.1 Cellular 62
- 3.2.2 Wi-Fi 64
- 3.2.3 Wireless Personal Area Networks (WPAN) 65
- 3.3 Isolation 66
- 3.4 Leakage 67
- 3.5 Capacity 67
- 3.6 Interference 70
- 3.7 Signal Quality 71
- 3.8 Technology 72
- 3.9 Cost 72
- 3.10 Upgradeability 73
- 3.11 System Expansion 74
- 3.12 Conclusion 74
- References 74
- 4 Radio Propagation 77
- 4.1 Maxwell's Equations 77
- 4.1.1 Gauss's Law for Electricity 79
- 4.1.2 Gauss's Law for Magnetism 79
- 4.1.3 Faraday's Law of Induction 81
- 4.1.4 Ampère's Circuital Law 81
- 4.1.5 Consequence of Maxwell's Equations 82
- 4.2 Plane Waves 82
- 4.2.1 Wave Equation 83
- 4.2.2 Plane Wave Properties 84
- 4.2.3 Wave Polarization 85
- 4.2.4 Wave Propagation in Lossy Media 87
- 4.3 Propagation Mechanisms 87
- 4.3.1 Is Electromagnetic Theory Wrong Inside Buildings? 87
- 4.3.2 Loss and Skin Effect 88
- 4.3.3 Reflection 89
- 4.3.4 Refraction (Transmission) 90
- 4.3.5 Diffraction 91
- 4.3.6 Scattering 92
- 4.3.7 Waveguiding 94
- 4.4 Effects of Materials 95
- 4.5 Path Loss 97
- 4.5.1 Median Path Loss 97
- 4.5.2 Link Budgets 98
- 4.5.3 Receiver Sensitivity 99
- 4.5.4 Maximum Acceptable Path Loss (MAPL) 99
- 4.5.5 Free-Space Loss 100
- 4.5.6 Excess Loss 100
- 4.6 Fast Fading 101
- 4.7 Shadowing (Slow Fading) 103
- 4.8 Building Penetration Loss 104
- 4.8.1 Radio Wave Propagation into Buildings 106
- 4.8.2 Variations with Frequency 106
- 4.8.3 Variations with Depth and Clutter 109
- 4.8.4 Comparison of Assumptions Made by Ofcom 109
- 4.9 Conclusion 109
- References 110
- 5 Channel Modelling 113
- 5.1 The Importance of Channel Modelling 113
- 5.2 Propagation Modelling Challenges 114
- 5.3 Model Classification 114
- 5.3.1 Channel Bandwidth 114
- 5.3.2 Propagation Environment 115
- 5.3.3 Model Construction Approach 115.
- 5.4 Model Accuracy 116
- 5.5 Empirical Models 117
- 5.5.1 Power Law Model 118
- 5.5.2 Keenan / Motley Model 119
- 5.5.3 ITU-R Indoor Model 121
- 5.5.4 Siwiak / Bertoni / Yano (SBY) Multipath-Based Model 122
- 5.5.5 Ericsson Multiple Breakpoint Model 122
- 5.5.6 Tuan Empirical Indoor Model: 900 MHz to 5.7 GHz 123
- 5.5.7 Attenuation Factor Model 123
- 5.5.8 Indoor Dominant Path Model (DPM) 124
- 5.5.9 COST-231 Multiwall Model 126
- 5.6 Physical Models 128
- 5.6.1 Introduction to Ray Tracing 129
- 5.6.2 Honcharenko / Bertoni Model 130
- 5.6.3 Ray-Tracing Site-Specific Model 131
- 5.6.4 Lee Ray-Tracing Model 132
- 5.6.5 Multichannel Coupling (MCC) Prediction 133
- 5.6.6 Angular Z-Buffer Algorithm for Efficient Ray Tracing 136
- 5.6.7 Intelligent Ray-Tracing (IRT) Model 138
- 5.6.8 Hybrid Parabolic Equation / Integral Equation Indoor Model 139
- 5.7 Hybrid Models 140
- 5.7.1 Reduced-Complexity UTD Model 140
- 5.7.2 Measurement-Based Prediction 142
- 5.8 Outdoor-to-Indoor Models 143
- 5.8.1 COST-231 Line-of-Sight Model 144
- 5.8.2 COST-231 Non-Line-of-Sight Model 146
- 5.8.3 Broadband Wireless Access (BWA) Penetration Model 147
- 5.8.4 Ichitsubo / Okamoto Outdoor-to-Indoor Model (800 MHz / 8 GHz) 148
- 5.8.5 Taga / Miura Model Using Identification of Path Passing Through Wall Openings 149
- 5.9 Models for Propagation in Radiating Cables 150
- 5.9.1 Zhang Model 150
- 5.9.2 Carter Model 151
- 5.9.3 Seseña / Aragón / Castañón Model 152
- 5.10 Wideband Channel Characteristics 153
- 5.11 Noise Considerations 156
- 5.11.1 Noise Sources 157
- 5.11.2 Noise Parameters 157
- 5.11.3 Considerations for Indoor Wireless Systems 158
- 5.12 In-Building Planning Tools 159
- 5.12.1 iBwave Design 159
- 5.12.2 WiMap-4G 160
- 5.12.3 Mentum CellPanner 160
- 5.12.4 Atrium 160
- 5.12.5 WinProp 160
- 5.12.6 CellTrace 161
- 5.12.7 EDX Signal Pro 161
- 5.12.8 iBuildNet DAS 162
- 5.12.9 Wireless InSite 162
- 5.13 Conclusion 162
- References 163
- 6 Antennas 167
- 6.1 The Basics of Antenna Theory 167.
- 6.1.1 Conditions for Radiation 168
- 6.1.2 Antenna Regions 169
- 6.2 Antenna Parameters 170
- 6.2.1 Radiation Pattern 171
- 6.2.2 Directivity 174
- 6.2.3 Radiation Resistance and Efficiency 176
- 6.2.4 Power Gain 177
- 6.2.5 Bandwidth 178
- 6.2.6 Reciprocity 179
- 6.2.7 Receiving Antenna Aperture 180
- 6.2.8 Beamwidth 181
- 6.2.9 Cross-Polar Discrimination 181
- 6.2.10 Polarization Matching 182
- 6.3 Antenna Types 183
- 6.3.1 Linear Wire 183
- 6.3.2 Loop 184
- 6.3.3 Antenna Arrays 186
- 6.3.4 Travelling Wave and Broadband 186
- 6.3.5 Microstrip 187
- 6.3.6 Yagi-Uda 188
- 6.3.7 Aperture Antennas 189
- 6.3.8 Horn 189
- 6.3.9 Monopole 190
- 6.3.10 Parabolic Reflector (Dish) 190
- 6.3.11 Smart Antennas 192
- 6.4 Antenna Performance Issues 193
- 6.4.1 Mean Effective Gain (MEG) 193
- 6.4.2 Radiation Pattern Extrapolation 195
- 6.4.3 Reliability of Radiation Patterns 198
- 6.5 Antenna Measurements 199
- 6.6 MIMO (Multiple-Input Multiple-Output) 200
- 6.7 Examples Of In-Building Antennas 203
- 6.7.1 In-Building Cellular Antenna Requirements 203
- Contents xi
- 6.7.2 Omnidirectional 203
- 6.7.3 Directional 206
- 6.7.4 Macrocell 207
- 6.7.5 Multiband 207
- 6.7.6 Deployment Considerations 208
- 6.8 Radiating Cables 208
- 6.8.1 Structure 209
- 6.8.2 Applications 210
- 6.8.3 Propagation Modes 210
- 6.8.3.1 Coupled Mode 210
- 6.8.3.2 Radiating Mode 211
- 6.8.4 Parameters 211
- 6.8.4.1 Coupling Loss 211
- 6.8.4.2 Insertion Loss 211
- 6.8.4.3 Bandwidth 211
- 6.8.5 Practical Considerations 212
- 6.9 Conclusion 212
- References 212
- 7 Radio Measurements 215
- 7.1 The Value of Measurements 215
- 7.1.1 Tuning Empirical Path Loss Models 216
- 7.1.2 Creating Synthetic Channel Models 218
- 7.1.3 Validating Indoor Radio Designs 218
- 7.2 Methodology for Indoor Measurements 218
- 7.2.1 Measurement Campaign Plan 218
- 7.2.2 Preliminary Site Visit 219
- 7.2.3 Site Acquisition and Permissions 219
- 7.2.4 Equipment Checklist 219
- 7.2.5 Measurement Campaign 219.
- 7.2.6 Data Postprocessing 219
- 7.2.7 Postvisit to Site 219
- 7.3 Types of Measurement Systems 220
- 7.3.1 Narrowband Measurements 220
- 7.3.1.1 CW Measurements 221
- 7.3.1.2 Code Scanning 223
- 7.3.1.3 Engineering Test Mobiles 224
- 7.3.1.4 Comparative Analysis 224
- 7.3.2 Wideband Measurements 226
- 7.4 Measurement Equipment 228
- 7.4.1 Transmit Equipment 228
- 7.4.2 Receive Rquipment 229
- 7.4.3 Miscellaneous Testing Components 230
- 7.4.4 Buyer's Guide 232
- 7.5 Types of Indoor Measurement Surveys 233
- 7.5.1 Design Survey 233
- 7.5.2 Existing Coverage 234
- 7.6 Guidelines for Effective Radio Measurements 235
- 7.6.1 Planning Your Measurements: The MCP 235
- 7.6.1.1 Introduction 236
- 7.6.1.2 Objectives 236
- 7.6.1.3 Requirements 236
- 7.6.1.4 Antenna Locations 237
- 7.6.1.5 Walk Test Routes 238
- 7.6.1.6 Workplan 238
- 7.6.1.7 Implications of Not Having an MCP 238
- 7.6.2 Choose a Suitable Navigation System 238
- 7.6.3 Signal Sampling and Averaging Considerations 241
- 7.6.4 Documentation 245
- 7.6.5 Walk Test Best Practice 246
- 7.6.6 Equipment Calibration and Validation 247
- 7.7 Model Tuning and Validation 250
- 7.7.1 Measurements for Model Tuning 251
- 7.7.2 Factors Affecting Model Tuning 252
- 7.7.3 Impact of Having Insufficient Measurements for Tuning 252
- 7.8 Conclusion 254
- References 255
- 8 Capacity Planning and Dimensioning 257
- 8.1 Introduction 257
- 8.2 An Overview On Teletraffic 258
- 8.2.1 Trunking 259
- 8.2.2 Loss and Queue Networks 260
- 8.2.3 Busy-Hour 260
- 8.3 Capacity Parameters / Circuit-Switched 260
- 8.3.1 Blocking 260
- 8.3.2 Grade of Service 261
- 8.3.3 Traffic per User 261
- 8.3.4 Offered and Carried Traffic 262
- 8.3.5 Traffic Categories 263
- 8.4 Data Transmission Parameters 264
- 8.4.1 Delay 264
- 8.4.2 Throughput 264
- 8.4.3 Latency 264
- 8.5 Capacity Limits 265
- 8.6 Radio Resource Management 265
- 8.7 Load Sharing: Base Station Hotels 266
- 8.8 Traffic Mapping 267
- 8.9 Capacity Calculations 267.
- 8.9.1 Service Categories 268
- 8.9.1.1 Service Types 268
- 8.9.1.2 Traffic Classes 268
- 8.9.1.3 Service Category Parameters 269
- 8.9.2 Service Environment 270
- 8.9.3 Radio Environment 271
- 8.9.4 Radio Access Technology Groups (RATGs) 272
- 8.9.5 Methodology Flowchart 272
- 8.9.6 Market Data Analysis 273
- 8.9.7 Traffic Demand Calculation by SE and SC 274
- 8.9.8 Traffic Distribution Amongst RATGs 275
- 8.9.8.1 Distribution Ratios 276
- 8.9.8.2 Distribution of Session Arrival Rates 278
- 8.9.8.3 Offered Traffic 279
- 8.9.9 Carried Traffic Capacity Determination 279
- 8.9.9.1 Circuit-Switched Traffic 279
- 8.9.9.2 Packet-Switched Traffic 280
- 8.10 Wi-Fi Capacity 280
- 8.10.1 The Challenge 280
- 8.10.2 Facts and Figures 280
- 8.10.3 Coverage Design 282
- 8.10.4 Capacity Design 283
- 8.10.5 Additional Challenges 283
- 8.11 Data Offloading Considerations 284
- 8.11.1 Data Offload Using Femtocells 287
- 8.11.2 Data Offload Using Wi-Fi 287
- 8.11.3 Femtocell versus Wi-Fi 287
- 8.11.3.1 Wi-Fi 287
- 8.11.3.2 Femtocells 288
- 8.11.4 Carrier Wi-Fi 288
- 8.11.5 UMA/GAN 288
- 8.11.6 Seamless Authentication 289
- 8.11.7 Turning Wi-Fi into an Operator Network 289
- 8.11.7.1 WBA Next Generation Hotspot 290
- 8.11.7.2 WBA Roaming 290
- 8.11.7.3 WFA Hotspot 290
- 8.11.7.4 ANDSF 290
- 8.11.7.5 I-WLAN 290
- 8.11.8 Discussion 290
- 8.12 Conclusion 291
- References 292
- 9 RF Equipment and Distribution Systems 293
- 9.1 Base Stations 293
- 9.2 Distributed Antenna Systems 295
- 9.2.1 Passive DAS 296
- 9.2.2 Active DAS 297
- 9.2.3 Hybrid DAS 299
- 9.2.4 Installation 300
- 9.3 RF Miscellaneous / Passive 300
- 9.3.1 Cables 301
- 9.3.2 Splitters/Combiners 302
- 9.3.3 Antennas 302
- 9.3.4 Directional Couplers 303
- 9.3.5 Tappers 304
- 9.3.6 Attenuators 305
- 9.3.7 Circulators 306
- 9.3.8 Terminations/Dummy Loads 307
- 9.3.9 Duplexers 308
- 9.3.10 Diplexers/Triplexers 308
- 9.4 RF Miscellaneous / Active 308
- 9.4.1 Amplifiers 308.
- 9.4.2 Active DAS Components 309
- 9.4.2.1 Main Unit 309
- 9.4.2.2 Expansion Unit 309
- 9.4.2.3 Remote Unit 309
- 9.5 Repeaters 310
- 9.5.1 Repeater Deployments 310
- 9.5.1.1 Operator-Deployed Repeaters 310
- 9.5.1.2 Traditional Consumer Repeaters 311
- 9.5.1.3 Intelligent Repeaters 312
- 9.5.2 Disadvantages 312
- 9.5.3 Installation Issues 312
- 9.5.4 Benefits 314
- 9.6 Conclusion 314
- References 314
- 10 Small Cells 315 /Simon R. Saunders
- 10.1 What is a Small Cell? 315
- 10.2 Small Cell Species 316
- 10.2.1 Femtocells for Residential Environments 316
- 10.2.2 Picocells 316
- 10.2.3 Metrocells 317
- 10.2.4 Rural and Remote Small Cells 317
- 10.3 The Case for Small Cells 318
- 10.3.1 Capacity 318
- 10.3.2 Coverage 318
- 10.3.3 User Experience 318
- 10.3.4 Cost Effectiveness 318
- 10.4 History and Standards 318
- 10.5 Architecture and Management 320
- 10.6 Coverage, Capacity and Interference 321
- 10.7 Business Case 323
- 10.8 Regulation 324
- 10.9 Small Cells ComparedWith Other IndoorWireless Technologies 324
- 10.9.1 Distributed Antenna Systems (DASs) 324
- 10.9.2 Wi-Fi 325
- 10.9.3 Repeaters and Relay Nodes 326
- 10.10 Market 326
- 10.11 Future: New Architectures and Towards 5G 327
- References 327
- 11 In-Building Case Studies 331 /Vladan Jevremovic
- 11.1 Public Venue 331
- 11.1.1 Scenario 332
- 11.1.2 Solution 332
- 11.1.3 Common Design Requirements 332
- 11.1.3.1 Multicarrier (Neutral Host) 332
- 11.1.3.2 Multiband 333
- 11.1.3.3 Multitechnology 334
- 11.1.4 Common Best Practices 335
- 11.1.4.1 Passive Intermodulation (PIM) 335
- 11.1.4.2 Downlink Design 335
- 11.1.4.3 Uplink Design 336
- 11.1.5 Summary 341
- 11.2 Stadium 341
- 11.2.1 Scenario 342
- 11.2.2 Solution 344
- 11.2.3 Design Requirements 344
- 11.2.3.1 RF Coverage 344
- 11.2.3.2 Capacity 344
- 11.2.3.3 Handoff Management 344
- 11.2.3.4 Interference Management 345
- 11.2.4 Site Survey 345
- 11.2.5 Detailed 3-D Modelling 346
- 11.2.6 Sectorization 348.
- 11.2.7 Macro Coverage Management 349
- 11.2.8 Passive Intermodulation Management 350
- 11.2.9 Design for Stadium Capacity 350
- 11.2.9.1 Data Capacity Sizing 352
- 11.2.9.2 Voice Capacity Sizing 358
- 11.2.10 RF Coverage Design 360
- 11.2.11 Summary 361
- 11.3 Shopping Centre 362
- 11.3.1 Scenario 362
- 11.3.2 Design Requirements 363
- 11.3.2.1 RF Coverage 363
- 11.3.2.2 Antenna Placement Restrictions 364
- 11.3.3 Solution 364
- 11.3.4 Antenna Choice and Placement 364
- 11.3.5 RF Coverage Design 365
- 11.3.6 Capacity Dimensioning 367
- 11.3.7 Sectorization 372
- 11.3.8 Data Rate Coverage 372
- 11.3.9 Summary 373
- 11.4 Business Campus 374
- 11.4.1 Scenario 374
- 11.4.2 Design Requirements 375
- 11.4.2.1 RF Coverage 375
- 11.4.2.2 Handoff Management 376
- 11.4.2.3 Interference Management 377
- 11.4.3 Solution 378
- 11.4.4 Interference Control 378
- 11.4.5 Lift Coverage 380
- 11.4.6 Detailed RF Coverage Design 383
- 11.4.7 Summary 385
- 11.5 Underground (Subway) 386
- 11.5.1 Scenario 386
- 11.5.2 Design Requirements 387
- 11.5.2.1 RF Coverage 387
- 11.5.2.2 Capacity 389
- 11.5.2.3 Handoff Management 390
- 11.5.3 Solution 390
- 11.5.4 RF Coverage Design 391
- 11.5.5 Capacity 393
- 11.5.5.1 Data 393
- 11.5.5.2 Voice 400
- 11.5.6 Environmental Challenges 402
- 11.5.7 Radio Coverage Maps 403
- 11.5.8 Summary 406
- References 406
- Index 409.