Digital communications with emphasis on data modems theory, analysis, design, simulation, testing, and applications

This book uses a practical approach in the application of theoretical concepts to digital communications in the design of software-defined radio modems. The book discusses the design, implementation, and performance verification of waveforms and algorithms appropriate for digital data modulation and...

Descripción completa

Detalles Bibliográficos
Otros Autores: Middlestead, Richard W., author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken : Wiley 2015.
Edición:1st ed
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009849098206719
Tabla de Contenidos:
  • -- Preface xxi / /Acknowledgments xxv / /Summary of Notations xxvii / /About the Cover xxix / /About the Companion Website xxxi / /1 Mathematical Background and Analysis Techniques 1 / /1.1 Introduction 1 / /1.2 The Fourier Transform and Fourier Series 5 / /1.3 Pulse Distortion with Ideal Filter Models 16 / /1.4 Correlation Processing 19 / /1.5 Random Variables and Probability 20 / /1.6 Random Processes 41 / /1.7 The Matched Filter 44 / /1.8 The Likelihood and Log-Likelihood Ratios 46 / /1.9 Parameter Estimation 47 / /1.10 Modem Configurations and Automatic Repeat Request 55 / /1.11 Windows 57 / /1.12 Matrices Vectors and Related Operations 66 / /1.13 Often Used Mathematical Procedures 70 / /1.14 Often Used Mathematical Relationships 71 / /2 Digital Signal Processing and Modem Design Considerations 81 / /2.1 Introduction 81 / /2.2 Discrete Amplitude Sampling 81 / /2.3 Discrete-Time Sampling 87 / /2.4 Signal Reconstruction Following Discrete-Time Sampling 91 / /2.5 Baseband Sampling 92 / /2.6 Bandpass Sampling 92 / /2.7 Corrections for Nonideal Modulators and Demodulators 99 / /2.8 Multirate Signal Processing and Interpolation 106 / /Appendix 2A Amplitude Quantization Function Subprogram 121 / /Appendix 2B Hilbert Transform Parameters 122 / /Appendix 2C Derivation of Parabolic Interpolation Error 126 / /3 Digital Communications 133 / /3.1 Introduction 133 / /3.2 Digital Data Modulation and Optimum Demodulation Criteria 135 / /3.3 Information and Channel Capacity 139 / /3.4 Bit-Error Probability Bound on Memoryless Channel 148 / /3.5 Probability Integral and the Error Function 150 / /4 Phase Shift Keying (PSK) Modulation Demodulation and Performance 153 / /4.1 Introduction 153 / /4.2 Constant Envelope Phase-Modulated Waveforms 154 / /4.3 Non-Constant Envelope Phase-Modulated Waveforms 175 / /4.4 Phase-Modulated Waveform Spectrums and Performance 178 / /5 Frequency Shift Keying (FSK) Modulation Demodulation and Performance 207 / /5.1 Introduction 207 / /5.2 Coherent Detection of BFSK - Known Frequency and Phase 207 / /5.3 Noncoherent Detection of BFSK - Known Frequency and Unknown Phase 210 / /5.4 Case Studies: Coherent and Noncoherent BFSK Performance Simulation 211 / /5.5 Noncoherent Detection of BFSK - Unknown Frequency and Phase 214 / /5.6 BFSK Spectral Density with Arbitrary Modulation Index 219 / /6 Amplitude Shift Keying Modulation Demodulation and Performance 227 / /6.1 Introduction 227 / /6.2 Amplitude Shift Keying (ASK) 227 / /6.3 Quadrature Amplitude Modulation (QAM) 234 / /6.4 Alternate QAM Waveform Constellations 236 / /6.5 Case Study: 16-ary QAM Performance Evaluation 236 / /6.6 Partial Response Modulation 237 / /7 M-ary Coded Modulation 251 / /7.1 Introduction 251 / /7.2 Coherent Detection of Orthogonal Coded Waveforms 252 / /7.3 Noncoherent Detection of M-ary Orthogonal Waveforms 253 / /7.4 Coherent Detection of M-ary Biorthogonal Waveforms 256 / /8 Coding for Improved Communications 261 / /8.1 Introduction 261 / /8.2 Pulse Code Modulation 261 / /8.3 Gray Coding 268 / /8.4 Differential Coding 269 / /8.5 Pseudo-Random Noise Sequences 270 / /8.6 Binary Cyclic Codes 273 / /8.7 Cyclic Redundancy Check Codes 274 / /8.8 Data Randomizing Codes 276 / /8.9 Data Interleaving 277 / /8.10 Wagner Coding and Decoding 279 / /8.11 Convolutional Codes 283 / /8.12 Turbo and Turbo-Like Codes 299 / /8.13 LDPC Code and TPC 313 / /8.14 Bose-Chaudhuri-Hocquenghem Codes 315 / /Appendix 8A 328 / /Appendix 8B 329 / /9 Forward Error Correction Coding Without Bandwidth Expansion 339 / /9.1 Introduction 339 / /9.2 Multi-h M-ary CPM 340 / /9.3 Case Study: 2-h 4-ary 1REC CPM 350 / /9.4 Multiphase Shift Keying Trellis-Coded Modulation 362 / /9.5 Case Study: Four-State 8PSK-TCM Performance Over Satellite Repeater 367 / /10 Carrier Acquisition and Tracking 375 / /10.1 Introduction 375 / /10.2 Bandpass Limiter 377 / /10.3 Baseband Phaselock Loop Implementation 378 / /10.4 Phase-Error Generation 378 / /10.5 First-Order Phaselock Loop 380 / /10.6 Second-Order Phaselock Loop 380 / /10.7 Third-Order Phaselock Loop 390 / /10.8 Optimum Phase Tracking Algorithms 396 / /10.9 Squaring Loss Evaluation 406 / /10.10 Case Study: BPSK and QPSK Phaselock Loop Performance 408 / /10.11 Case Study: BPSK Phase Tracking Performance of a Disadvantaged Transmit Terminal 410 / /11 Waveform Acquisition 413 / /11.1 Introduction 413 / /11.2 CW Preamble Segment Signal Processing 416 / /11.3 Symbol Synchronization Preamble Segment 432 / /11.4 Start-of-Message (SOM) Preamble segment 452 / /11.5 Signal-to-Noise Ratio Estimation 452 / /12 Adaptive Systems 463 / /12.1 Introduction 463 / /12.2 Optimum Filtering - Wiener's Solution 464 / /12.3 Finite Impulse Response-Adaptive Filter Estimation 465 / /12.4 Intersymbol Interference and Multipath Equalization 469 / /12.5 Interference and Noise Cancellation 472 / /12.6 Recursive Least Square (RLS) Equalizer 473 / /12.7 Case Study: LMS Linear Feedforward Equalization 474 / /12.8 Case Study: Narrowband Interference Cancellation 474 / /12.9 Case Study: Recursive Least Squares Processing 480 / /13 Spread-Spectrum Communications 485 / /13.1 Introduction 485 / /13.2 Spread-Spectrum Waveforms and Spectrums 487 / /13.3 Jammer and Interceptor Encounters 499 / /13.4 Communication Interceptors 502 / /13.5 Bit-Error Performance of DSSS Waveforms with Jamming 504 / /13.6 Performance of MFSK with Partial-Band Noise Jamming 512 / /13.7 Performance of DCMPSK with Partial-Band Noise Jamming 514 / /13.8 FHSS Waveforms with Multitone Jamming 515 / /13.9 Approximate Performance with Jammer Threats 521 / /13.10 Case Study: Terrestrial Jammer Encounter and Link-Standoff Ratio 522 / /14 Modem Testing Modeling and Simulation 531 / /14.1 Introduction 531 / /14.2 Statistical Sampling 532 / /14.3 Computer Generation of Random Variables 539 / /14.4 Baseband Waveform Description 545 / /14.5 Sampled Waveform Characterization 547 / /14.6 Case Study: BPSK Monte Carlo Simulation 548 / /14.7 System Performance Evaluation Using Quadrature Integration 550 / /14.8 Case Study: BPSK Bit-Error Evaluation with PLL Tracking 551 / /14.9 Case Study: QPSK Bit-Error Evaluation with PLL Tracking 553 / /15 Communication Range Equation and Link Analysis 557 / /15.1 Introduction 557 / /15.2 Receiver and System Noise Figures and Temperatures 560 / /15.3 Antenna Gain and Patterns 568 / /15.4 Rain Loss 571 / /15.5 Electric Field Wave Polarization 573 / /15.6 Phase-Noise Loss 578 / /15.7 Scintillation Loss 583 / /15.8 Multipath Loss 583 / /15.9 Interface Mismatch Loss 584 / /15.10 Miscellaneous System Losses 585 / /15.11 Nonlinear Power Amplifier Analysis and Simulation 585 / /15.12 Computer Modeling of TWTA and SSPA Nonlinearities 588 / /15.13 Establishing Signal Levels for Simulation Modeling 590 / /15.14 Case Study: Performance Simulation of SRRC-QPSK with SSPA Nonlinearity 592 / /15.15 Link Budget Analysis 596 / /16 Satellite Orbits 603 / /16.1 Introduction 603 / /16.2 Satellite Orbits 606 / /16.3 Earth Stations 607 / /16.4 Path Loss Doppler and Doppler-rate 609 / /16.5 Satellite Viewing 609 / /16.6 Satellite Orbit Selection 610 / /16.7 Satellite Orbit Position Estimation From Parameter Measurements 611 / /16.8 Case Study: Example Satellite Encounters 612 / /17 Communications Through Bandlimited Time-Invariant Linear Channels 617 / /17.1 Introduction 617 / /17.2 Inphase and Quadrature Channel Response 618 / /17.3 Inphase and Quadrature Channel Response to Arbitrary Signal 619 / /17.4 Pulse Modulated Carrier Signal Characteristics 621 / /17.5 Channel Response to a Pulsed Modulated Waveform 622 / /17.6 Example Performance Simulations 623 / /17.7 Example of Channel Amplitude and Phase Responses 624 / /17.8 Example Channel Amplitude Phase and Delay Functions 627 / /18 Communications in Fading Environments 633 / /18.1 Introduction 633 / /18.2 Ricean Fading Channels 634 / /18.3 Ricean Cumulative Distribution 635 / /18.4 Application of Ricean Channel Model 635 / /18.5 Performance of Several Binary Modulation
  • Waveforms with Ricean Fading 636 / /18.6 Generation of Ricean Random Variables 639 / /18.7 Relationships Between Fading Channel Parameters 641 / /18.8 Diversity Techniques for Fading Channels 643 / /19 Atmospheric Propagation 649 / /19.1 Introduction 649 / /19.2 Communication Link Geometry for Curved Earth 650 / /19.3 Reflection 652 / /19.4 Case Study: LEO Satellite Multipath Propagation 654 / /19.5 Refraction 656 / /19.6 Diffraction 660 / /19.7 Longley-Rice Propagation Loss Model 661 / /19.8 Urban Suburban and Rural Environment Propagation Loss Models 663 / /19.9 Land Mobile Satellite Propagation Loss Models 665 / /19.10 Impulsive Noise Channel 667 / /19.11 Ocean Wind Wave Channel 676 / /19.12 Laser Communications Using Photomultiplier Detector 684 / /20 Ionospheric Propagation 699 / /20.1 Introduction 699 / /20.2 Electron Densities: Natural Environment 700 / /20.3 Electron Densities: Nuclear-Disturbed Environment 703 / /20.4 The Refractive Index and Signal Propagation 704 / /20.5 Signal Propagation in Severe Scintillation Environment 706 / /20.6 Propagation Disturbances Following Severe Absorption 712 / /20.7 Rayleigh Scintillation Channel Model 715 / /20.8 Scintillation Mitigation Techniques 721 / /20.9 Case Study: BPSK and DCBPSK Performance in Rayleigh Fading Channel 722 / /Appendix 20A 727 / /Appendix A: Classical Filters and Applications 733 / /Appendix B: Digital Filter Design and Applications 747 / /Appendix C: Detection of Signals in Noise 755 / /Index 769.