Theory of computation
"In the (meta)theory of computing, the fundamental questions of the limitations of computing are addressed. These limitations, which are intrinsic rather than technology dependent, may immediately rule out the existence of algorithmic solutions for some problems while for others they rule out...
Autor principal: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Hoboken, N.J. :
Wiley
2012.
|
Edición: | 1st ed |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009849097106719 |
Tabla de Contenidos:
- Theory of Computation; CONTENTS; Preface; 1 Mathematical Foundations; 1.1 Sets and Logic; Naïvely; 1.1.1 A Detour via Logic; 1.1.2 Sets and their Operations; 1.1.3 Alphabets, Strings and Languages; 1.2 Relations and Functions; 1.3 Big and Small Infinite Sets; Diagonalization; 1.4 Induction from a User's Perspective; 1.4.1 Complete, or Course-of-Values, Induction; 1.4.2 Simple Induction; 1.4.3 The Least Principle; 1.4.4 The Equivalence of Induction and the Least Principle; 1.5 Why Induction Ticks; 1.6 Inductively Defined Sets; 1.7 Recursive Definitions of Functions; 1.8 Additional Exercises
- 2 Algorithms, Computable Functions and Computations 2.1 A Theory of Computability; 2.1.1 A Programming Framework for Computable Functions; 2.1.2 Primitive Recursive Functions; 2.1.3 Simultaneous Primitive Recursion; 2.1.4 Pairing Functions; 2.1.5 Iteration; 2.2 A Programming Formalism for the Primitive Recursive Functions; 2.2.1 PR vs. L; 2.2.2 Incompleteness of PR; 2.3 URM Computations and their Arithmetization; 2.4 A Double Recursion that Leads Outside the Primitive Recursive Function Class; 2.4.1 The Ackermann Function; 2.4.2 Properties of the Ackermann Function
- 2.4.3 The Ackermann Function Majorizes All the Functions of PR 2.4.4 The Graph of the Ackermann Function is in PR*; 2.5 Semi-computable Relations; Unsolvability; 2.6 The Iteration Theorem of Kleene; 2.7 Diagonalization Revisited; Unsolvability via Reductions; 2.7.1 More Diagonalization; 2.7.2 Reducibility via the S-m-n Theorem; 2.7.3 More Dovetailing; 2.7.4 Recursive Enumerations; 2.8 Productive and Creative Sets; 2.9 The Recursion Theorem; 2.9.1 Applications of the Recursion Theorem; 2.10 Completeness; 2.11 Unprovability from Unsolvability
- 3.5 Additional Exercises 4 Adding a Stack to a NFA: Pushdown Automata; 4.1 The PDA; 4.2 PDA Computations; 4.2.1 ES vs AS vs ES+AS; 4.3 The PDA-acceptable Languages are the Context Free Languages; 4.4 Non Context Free Languages; Another Pumping Lemma; 4.5 Additional Exercises; 5 Computational Complexity; 5.1 Adding a Second Stack; Turing Machines; 5.1.1 Turing Machines; 5.1.2 N P-Completeness; 5.1.3 Cook's Theorem; 5.2 Axt, Loop Program, and Grzegorczyk Hierarchies; 5.3 Additional Exercises; Bibliography; Index