Introduction to nonlinear aeroelasticity

Detalles Bibliográficos
Otros Autores: Dimitriadis, Grigorios, 1972- author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, New Jersey ; Chichester, England : Wiley 2017.
Edición:1 edition
Colección:Aerospace series (Chichester, England)
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009849089406719
Tabla de Contenidos:
  • Intro
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • Dimitriadis: Nonlinear Aeroelasticity - Series Preface Oct 2016
  • About the Companion Website
  • Chapter 1 Introduction
  • 1.1 Sources of Nonlinearity
  • 1.2 Origins of Nonlinear Aeroelasticity
  • References
  • Chapter 2 Nonlinear Dynamics
  • 2.1 Introduction
  • 2.2 Ordinary Differential Equations
  • 2.3 Linear Systems
  • 2.3.1 Stable Oscillatory Response
  • 2.3.2 Neutral Oscillatory Response
  • 2.3.3 Unstable Oscillatory Response
  • 2.3.4 Stable Non-oscillatory Response
  • 2.3.5 Unstable Non-oscillatory Response
  • 2.3.6 Fixed Point Summary
  • 2.4 Nonlinear Systems
  • 2.4.1 Linearisation Around Fixed Points
  • 2.4.2 The Pitching Wing Section with Cubic Stiffness
  • 2.4.3 The Pitchfork Bifurcation
  • 2.5 Stability in the Lyapunov Sense
  • 2.6 Asymmetric Systems
  • 2.6.1 The Fold Bifurcation
  • 2.6.2 The Transcritical Bifurcation
  • 2.7 Existence of Periodic Solutions
  • 2.7.1 Nonlinear Aeroelastic Galloping
  • 2.8 Estimating Periodic Solutions
  • 2.8.1 Periodic Solutions of the Nonlinear Galloping Oscillator
  • 2.8.2 The Hopf Bifurcation
  • 2.9 Stability of Periodic Solutions
  • 2.9.1 Stability of Galloping Oscillations
  • 2.9.3 The Fold Bifurcation of Cycles
  • 2.10 Concluding Remarks
  • References
  • Chapter 3 Time Integration
  • 3.1 Introduction
  • 3.2 Euler Method
  • 3.2.1 Linear Systems
  • 3.2.2 Nonlinear Systems
  • 3.3 Central Difference Method
  • 3.3.1 Explicit Solution of Nonlinear Systems
  • 3.3.2 Implicit Solution of Nonlinear Systems
  • 3.4 Runge-Kutta Method
  • 3.5 Time-Varying Linear Approximation
  • 3.6 Integrating Backwards in Time
  • 3.7 Time Integration of Systems with Multiple Degrees of Freedom
  • 3.8 Forced Response
  • 3.9 Harmonic Balance
  • 3.9.1 Newton-Raphson
  • 3.9.2 Discrete Fourier Transform Techniques
  • 3.10 Concluding Remarks
  • References.
  • Chapter 4 Determining the Vibration Parameters
  • 4.1 Introduction
  • 4.2 Amplitude and Frequency Determination
  • 4.2.1 Event Detection
  • 4.3 Equivalent Linearisation
  • 4.4 Hilbert Transform
  • 4.5 Time-Varying Linear Approximation
  • 4.6 Short Time Fourier Transform
  • 4.7 Pinpointing Bifurcations
  • 4.7.1 Newton-Raphson
  • 4.7.2 Successive Bisection
  • 4.8 Limit Cycle Study
  • 4.9 Poincaré Sections
  • 4.10 Stability of Periodic Solutions
  • 4.10.1 Floquet Analysis
  • 4.11 Concluding Remarks
  • References
  • Chapter 5 Bifurcations of FundamentalAeroelastic Systems
  • 5.1 Introduction
  • 5.2 Two-Dimensional Unsteady Pitch-Plunge-ControlWing
  • 5.3 Linear Aeroelastic Analysis
  • 5.4 Hardening Stiffness
  • 5.4.1 Supercritical Hopf Bifurcation
  • 5.4.2 Subcritical Hopf Bifurcation
  • 5.4.3 Fold Bifurcation of Cycles
  • 5.4.4 Flutter of Nonlinear Systems
  • 5.4.5 Period-Doubling Bifurcation
  • 5.4.6 Torus Bifurcation
  • 5.5 Softening Stiffness
  • 5.6 Damping Nonlinearity
  • 5.6.1 Subcritical Hopf Bifurcation
  • 5.6.2 Static Divergence of Cycles
  • 5.6.3 Pitchfork Bifurcation of Cycles
  • 5.7 Two-Parameter Bifurcations
  • 5.7.1 Generalised Hopf Bifurcation
  • 5.7.2 Pitchfork-Hopf Bifurcation
  • 5.7.3 Hopf-Hopf Bifurcation
  • 5.8 Asymmetric Nonlinear Aeroelastic Systems
  • 5.8.1 Fold Bifurcation of Fixed Points and Cycles
  • 5.8.2 Transcritical Bifurcation of Fixed Points and Cycles
  • 5.8.3 Fold-Hopf Bifurcation
  • 5.9 Concluding Remarks
  • References
  • Chapter 6 Discontinuous Nonlinearities
  • 6.1 Introduction
  • 6.2 Piecewise Linear Stiffness
  • 6.2.1 Underlying and Overlying Linear Systems
  • 6.2.2 Fixed Points and Boundary Equilibrium Bifurcations
  • 6.2.3 Equivalent Linearisation of Piecewise Linear Stiffness
  • 6.2.4 Three-Domain Limit Cycles
  • 6.2.5 Two-Domain Limit Cycles
  • 6.2.6 Time Domain Solutions.
  • 6.3 Discontinuity-Induced Bifurcations
  • 6.3.1 The Boundary Equilibrium Bifurcation
  • 6.3.2 The Grazing Bifurcation
  • 6.4 Freeplay and Friction
  • 6.5 Concluding Remarks
  • References
  • Chapter 7 Numerical Continuation
  • 7.1 Introduction
  • 7.2 Algebraic Problems
  • 7.2.1 Prediction Correction
  • 7.2.2 Arclength Continuation
  • 7.2.3 Pseudo-Arclength Continuation
  • 7.3 Direct Location of Folds
  • 7.4 Fixed Point Solutions of Dynamic Systems
  • 7.4.1 Branch Points
  • 7.4.2 Arclength Step Control
  • 7.5 Periodic Solutions of Dynamic Systems
  • 7.5.1 Starting the Continuation Scheme
  • 7.5.2 Folds and Branch Points
  • 7.5.3 Branch Switching
  • 7.6 Stability of Periodic Solutions Calculated from Numerical Continuation
  • 7.7 Shooting
  • 7.7.1 Starting the Continuation Scheme
  • 7.7.2 Arclength Continuation
  • 7.7.3 Stability Analysis
  • 7.7.4 Branch Point Location and Branch Switching
  • 7.7.5 Grazing
  • 7.8 Harmonic Balance
  • 7.9 Concluding Remarks
  • References
  • Chapter 8 Low-Speed AerodynamicNonlinearities
  • 8.1 Introduction
  • 8.2 Vortex-Induced Vibrations
  • 8.3 Galloping
  • 8.4 Stall Flutter
  • 8.4.1 Dynamic Stall
  • 8.4.2 Leishman-Beddoes Model
  • 8.4.3 ONERA Model
  • 8.4.4 Aeroelastic Simulations using Dynamic Stall Models
  • 8.5 Concluding Remarks
  • References
  • Chapter 9 High-Speed AeroelasticNonlinearities
  • 9.1 Introduction
  • 9.2 Piston Theory
  • 9.3 Panel Flutter
  • 9.3.1 Buckling
  • 9.3.2 Limit Cycle Oscillations
  • 9.4 Concluding Remarks
  • References
  • Chapter 10 Finite Wings
  • 10.1 Introduction
  • 10.2 Cantilever Plate in Supersonic Flow
  • 10.3 Three-Dimensional Aerodynamic Modelling by the Vortex Lattice Method
  • 10.3.1 Aeroelastic Coupling
  • 10.3.2 Transforming to the Time Domain
  • 10.3.3 Nonlinear Response
  • 10.4 Concluding Remarks
  • References
  • Appendix A Aeroelastic Models
  • A.1 Galloping Oscillator.
  • A.2 Two-Dimensional Pitch-Plunge-Control Wing Section with Unsteady Aerodynamics
  • A.3 Two-Dimensional Pitch-Plunge-Control Wing Section with Quasi-Steady Aerodynamics
  • A.4 Two-Dimensional Pitch-Plunge Wing Section with Quasi-Steady Aerodynamics
  • A.5 Two-Dimensional Pitching Wing Section with Quasi-Steady Aerodynamics
  • A.6 Two-Dimensional Pitch-Plunge Wing with Leishman-Beddoes Aerodynamic Mode
  • A.7 Two-Dimensional Pitch-Plunge Wing with ONERA Aerodynamic Model
  • A.8 Two-Dimensional Pitch-Plunge-Control Wing Section with Supersonic Aerodynamics
  • A.9 Two-Dimensional Pitch-Plunge Wing Section with Supersonic Aerodynamics
  • References
  • Index.