Fundamentals of big data network analysis for research and industry
Otros Autores: | , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Chichester, UK :
John Wiley & Sons
2016.
|
Edición: | First edition |
Colección: | THEi Wiley ebooks.
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009849087406719 |
Tabla de Contenidos:
- Intro
- Title Page
- Copyright Page
- Contents
- Preface
- About the Authors
- List of Figures
- List of Tables
- Chapter 1 Why Big Data?
- 1.1 Big Data
- 1.2 What Creates Big Data?
- 1.3 How Do We Use Big Data?
- 1.4 Essential Issues Related to Big Data
- References
- Chapter 2 Basic Programs for Analyzing Networks
- 2.1 UCINET
- 2.2 NetMiner
- 2.3 R
- 2.4 Gephi
- 2.5 NodeXL
- References
- Chapter 3 Understanding Network Analysis
- 3.1 Defining Social Network Analysis
- 3.2 Basic SNA Concepts
- 3.2.1 Basic Terminology
- 3.2.2 Representation of a Network
- 3.3 Social Network Data
- 3.3.1 One-Mode and Two-Mode Networks
- 3.3.2 Attributes and Weights
- 3.3.3 Network Data Form
- References
- Chapter 4 Research Methods Using SNA
- 4.1 SNA Research Procedures
- 4.2 Identifying the Research Problem and Developing Hypotheses
- 4.2.1 Identifying the Research Problem
- 4.2.2 Developing Hypotheses
- 4.3 Research Design
- 4.3.1 Defining the Network Model
- 4.3.2 Establishing Network Boundaries
- 4.3.3 Measurement Evaluation
- 4.4 Acquisition of Network Data
- 4.4.1 Survey
- 4.4.2 Interview, Observation, and Experiment
- 4.4.3 Existing Data
- 4.5 Data Cleansing
- 4.5.1 Extraction of the Node and Link
- 4.5.2 Merging and Separation of Data
- 4.5.3 Directional Transformation in the Link
- 4.5.4 Transformation of the Weights in Links
- 4.5.5 Transformation of the Two-Mode Network to a One-Mode Network
- References
- Chapter 5 Position and Structure
- 5.1 Position
- 5.1.1 Degree Centrality
- 5.1.2 Closeness Centrality
- 5.1.3 Betweenness Centrality
- 5.1.4 Prestige Centrality
- 5.1.5 Broker
- 5.2 Cohesive Subgroup
- 5.2.1 Component
- 5.2.2 Community
- 5.2.3 Clique
- 5.2.4 k-Core
- References
- Chapter 6 Connectivity and Role
- 6.1 Connection Analysis
- 6.1.1 Connectivity
- 6.1.2 Reciprocity.
- 6.1.3 Transitivity
- 6.1.4 Assortativity
- 6.1.5 Network Properties
- 6.2 Role
- 6.2.1 Structural Equivalence
- 6.2.2 Automorphic Equivalence
- 6.2.3 Role Equivalence
- 6.2.4 Regular Equivalence
- 6.2.5 Block Modeling
- References
- Chapter 7 Data Structure in NetMiner
- 7.1 Sample Data
- 7.1.1 01.Org_Net_Tiny1
- 7.1.2 02.Org_Net_Tiny2
- 7.1.3 03.Org_Net_Tiny3
- 7.2 Main Concept
- 7.2.1 Data Structure
- 7.2.2 Creating Data
- 7.2.3 Inserting Data
- 7.2.4 Importing Data
- 7.3 Data Preprocessing
- 7.3.1 Change of Link
- 7.3.2 Extraction and Reordering of the Node and Link
- 7.3.3 Data Merge and Split
- Reference
- Chapter 8 Network Analysis Using NetMiner
- 8.1 Centrality and Cohesive Subgroup
- 8.1.1 Centrality
- 8.1.2 Cohesive Subgroup
- 8.2 Connectivity and Equivalence
- 8.2.1 Connectivity
- 8.2.2 Equivalence
- 8.3 Visualization and Exploratory Analysis
- 8.3.1 Visualization
- 8.3.2 Transformation of the Two-Mode Network to a One-Mode Network
- Appendix A Visualization
- A.1 Spring Algorithm
- A.2 Multidimensional Scaling Algorithm
- A.3 Cluster Algorithm
- A.4 Layered Algorithm
- A.5 Circular Algorithm
- A.6 Simple Algorithm
- References
- Appendix B Case Study: Knowledge Structure of Steel Research
- Reference
- Index
- EULA.