Applied Numerical Methods Using MATLAB
"This book makes use of MATLAB software to teach the fundamental concepts using the software to solve practical engineering and/or science problems. The programs are presented in a complete form so that readers can run them instantly with no programming skill, allowing them to focus on understa...
Main Author: | |
---|---|
Other Authors: | , , , , , , , , |
Format: | eBook |
Language: | Inglés |
Published: |
Newark :
John Wiley & Sons, Incorporated
2020.
|
Edition: | 2nd ed |
Subjects: | |
See on Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009849086406719 |
Table of Contents:
- Cover
- Title Page
- Copyright
- Contents
- Preface
- Acknowledgments
- About the Companion Website
- Chapter 1 MATLAB Usage and Computational Errors
- 1.1 Basic Operations of MATLAB
- 1.1.1 Input/Output of Data from MATLAB Command Window
- 1.1.2 Input/Output of Data Through Files
- 1.1.3 Input/Output of Data Using Keyboard
- 1.1.4 Two‐Dimensional (2D) Graphic Input/Output
- 1.1.5 Three Dimensional (3D) Graphic Output
- 1.1.6 Mathematical Functions
- 1.1.7 Operations on Vectors and Matrices
- 1.1.8 Random Number Generators
- 1.1.9 Flow Control
- 1.2 Computer Errors vs. Human Mistakes
- 1.2.1 IEEE 64‐bit Floating‐Point Number Representation
- 1.2.2 Various Kinds of Computing Errors
- 1.2.3 Absolute/Relative Computing Errors
- 1.2.4 Error Propagation
- 1.2.5 Tips for Avoiding Large Errors
- 1.3 Toward Good Program
- 1.3.1 Nested Computing for Computational Efficiency
- 1.3.2 Vector Operation vs. Loop Iteration
- 1.3.3 Iterative Routine vs. Recursive Routine
- 1.3.4 To Avoid Runtime Error
- 1.3.5 Parameter Sharing via GLOBAL Variables
- 1.3.6 Parameter Passing Through VARARGIN
- 1.3.7 Adaptive Input Argument List
- Chapter 2 System of Linear Equations
- 2.1 Solution for a System of Linear Equations
- 2.1.1 The Nonsingular Case (M &
- equals
- N)
- 2.1.2 The Underdetermined Case (M <
- N): Minimum‐norm Solution
- 2.1.3 The Overdetermined Case (M >
- N): Least‐squares Error Solution
- 2.1.4 Recursive Least‐Squares Estimation (RLSE)
- 2.2 Solving a System of Linear Equations
- 2.2.1 Gauss(ian) Elimination
- 2.2.2 Partial Pivoting
- 2.2.3 Gauss‐Jordan Elimination
- 2.3 Inverse Matrix
- 2.4 Decomposition (Factorization)
- 2.4.1 LU Decomposition (Factorization) - Triangularization
- 2.4.2 Other Decomposition (Factorization) - Cholesky, QR and SVD
- 2.5 Iterative Methods to Solve Equations.
- 2.5.1 Jacobi Iteration
- 2.5.2 Gauss‐Seidel Iteration
- 2.5.3 The Convergence of Jacobi and Gauss‐Seidel Iterations
- Chapter 3 Interpolation and Curve Fitting
- 3.1 Interpolation by Lagrange Polynomial
- 3.2 Interpolation by Newton Polynomial
- 3.3 Approximation by Chebyshev Polynomial
- 3.4 Pade Approximation by Rational Function
- 3.5 Interpolation by Cubic Spline
- 3.6 Hermite Interpolating Polynomial
- 3.7 Two‐Dimensional Interpolation
- 3.8 Curve Fitting
- 3.8.1 Straight‐Line Fit - A Polynomial Function of Degree 1
- 3.8.2 Polynomial Curve Fit - A Polynomial Function of Higher Degree
- 3.8.3 Exponential Curve Fit and Other Functions
- 3.9 Fourier Transform
- 3.9.1 FFT vs. DFT
- 3.9.2 Physical Meaning of DFT
- 3.9.3 Interpolation by Using DFS
- Chapter 4 Nonlinear Equations
- 4.1 Iterative Method toward Fixed Point
- 4.2 Bisection Method
- 4.3 False Position or Regula Falsi Method
- 4.4 Newton(‐Raphson) Method
- 4.5 Secant Method
- 4.6 Newton Method for a System of Nonlinear Equations
- 4.7 Bairstow's Method for a Polynomial Equation
- 4.8 Symbolic Solution for Equations
- 4.9 Real‐World Problems
- Chapter 5 Numerical Differentiation/Integration
- 5.1 Difference Approximation for the First Derivative
- 5.2 Approximation Error of the First Derivative
- 5.3 Difference Approximation for Second and Higher Derivative
- 5.4 Interpolating Polynomial and Numerical Differential
- 5.5 Numerical Integration and Quadrature
- 5.6 Trapezoidal Method and Simpson Method
- 5.7 Recursive Rule and Romberg Integration
- 5.8 Adaptive Quadrature
- 5.9 Gauss Quadrature
- 5.9.1 Gauss‐Legendre Integration
- 5.9.2 Gauss‐Hermite Integration
- 5.9.3 Gauss‐Laguerre Integration
- 5.9.4 Gauss‐Chebyshev Integration
- 5.10 Double Integral
- 5.11 Integration Involving PWL Function
- Chapter 6 Ordinary Differential Equations.
- 6.1 Euler's Method
- 6.2 Heun's Method - Trapezoidal Method
- 6.3 Runge‐Kutta Method
- 6.4 Predictor‐Corrector Method
- 6.4.1 Adams‐Bashforth‐Moulton Method
- 6.4.2 Hamming Method
- 6.4.3 Comparison of Methods
- 6.5 Vector Differential Equations
- 6.5.1 State Equation
- 6.5.2 Discretization of LTI State Equation
- 6.5.3 High‐order Differential Equation to State Equation
- 6.5.4 Stiff Equation
- 6.6 Boundary Value Problem (BVP)
- 6.6.1 Shooting Method
- 6.6.2 Finite Difference Method
- Chapter 7 Optimization
- 7.1 Unconstrained Optimization
- 7.1.1 Golden Search Method
- 7.1.2 Quadratic Approximation Method
- 7.1.3 Nelder‐Mead Method
- 7.1.4 Steepest Descent Method
- 7.1.5 Newton Method
- 7.1.6 Conjugate Gradient Method
- 7.1.7 Simulated Annealing
- 7.1.8 Genetic Algorithm
- 7.2 Constrained Optimization
- 7.2.1 Lagrange Multiplier Method
- 7.2.2 Penalty Function Method
- 7.3 MATLAB Built‐In Functions for Optimization
- 7.3.1 Unconstrained Optimization
- 7.3.2 Constrained Optimization
- 7.3.3 Linear Programming (LP)
- 7.3.4 Mixed Integer Linear Programming (MILP)
- 7.4 Neural Network[K‐1]
- 7.5 Adaptive Filter[Y‐3]
- 7.6 Recursive Least Square Estimation (RLSE)[Y‐3]
- Chapter 8 Matrices and Eigenvalues
- 8.1 Eigenvalues and Eigenvectors
- 8.2 Similarity Transformation and Diagonalization
- 8.3 Power Method
- 8.3.1 Scaled Power Method
- 8.3.2 Inverse Power Method
- 8.3.3 Shifted Inverse Power Method
- 8.4 Jacobi Method
- 8.5 Gram‐Schmidt Orthonormalization and QR Decomposition
- 8.6 Physical Meaning of Eigenvalues/Eigenvectors
- 8.7 Differential Equations with Eigenvectors
- 8.8 DoA Estimation with Eigenvectors[Y-3]
- Chapter 9 Partial Differential Equations
- 9.1 Elliptic PDE
- 9.2 Parabolic PDE
- 9.2.1 The Explicit Forward Euler Method
- 9.2.2 The Implicit Backward Euler Method.
- 9.2.3 The Crank‐Nicholson Method
- 9.2.4 Using the MATLAB function 'pdepe()'
- 9.2.5 Two‐Dimensional Parabolic PDEs
- 9.3 Hyperbolic PDES
- 9.3.1 The Explicit Central Difference Method
- 9.3.2 Two‐Dimensional Hyperbolic PDEs
- 9.4 Finite Element Method (FEM) for Solving PDE
- 9.5 GUI of MATLAB for Solving PDES - PDEtool
- 9.5.1 Basic PDEs Solvable by PDEtool
- 9.5.2 The Usage of PDEtool
- 9.5.3 Examples of Using PDEtool to Solve PDEs
- Appendix A Mean Value Theorem
- Appendix B Matrix Operations/Properties
- B.1 Addition and Subtraction
- B.2 Multiplication
- B.3 Determinant
- B.4 Eigenvalues and Eigenvectors of a Matrix1
- B.5 Inverse Matrix
- B.6 Symmetric/Hermitian Matrix
- B.7 Orthogonal/Unitary Matrix
- B.8 Permutation Matrix
- B.9 Rank
- B.10 Row Space and Null Space
- B.11 Row Echelon Form
- B.12 Positive Definiteness
- B.13 Scalar (Dot) Product and Vector (Cross) Product
- B.14 Matrix Inversion Lemma
- Appendix C Differentiation W.R.T. A Vector
- Appendix D Laplace Transform
- Appendix E Fourier Transform
- Appendix F Useful Formulas
- Appendix G Symbolic Computation
- G.1 How to Declare Symbolic Variables and Handle Symbolic Expressions
- G.2 Calculus
- G.2.1 Symbolic Summation
- G.2.2 Limits
- G.2.3 Differentiation
- G.2.4 Integration
- G.2.5 Taylor Series Expansion
- G.3 Linear Algebra
- G.4 Solving Algebraic Equations
- G.5 Solving Differential Equations
- Appendix H Sparse Matrices
- Appendix I MATLAB
- References
- Index
- Index for MATLAB Functions
- Index for Tables
- EULA.