Vehicle powertrain systems

Bibliographic Details
Main Author: Mashadi, Behrooz (-)
Other Authors: Crolla, David A.
Format: eBook
Language:Inglés
Published: Chichester, West Sussex ; Hoboken, N.J. : Wiley 2012.
Edition:1st ed
Subjects:
See on Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009849084506719
Table of Contents:
  • VEHICLE POWERTRAIN SYSTEMS
  • Contents
  • About the Authors
  • Preface
  • List of Abbreviations
  • 1 Vehicle Powertrain Concepts
  • 1.1 Powertrain Systems
  • 1.1.1 Systems Approach
  • 1.1.2 History
  • 1.1.3 Conventional Powertrains
  • 1.1.4 Hybrid Powertrains
  • 1.2 Powertrain Components
  • 1.2.1 Engine
  • 1.2.2 Transmission
  • 1.2.3 Vehicle Structure
  • 1.2.4 Systems Operation
  • 1.3 Vehicle Performance
  • 1.4 Driver Behaviour
  • 1.5 The Role of Modelling
  • 1.6 Aim of the Book
  • Further Reading
  • References
  • 2 Power Generation Characteristics of Internal Combustion Engines
  • 2.1 Introduction
  • 2.2 Engine Power Generation Principles
  • 2.2.1 Engine Operating Modes
  • 2.2.2 Engine Combustion Review
  • 2.2.3 Engine Thermodynamics Review
  • 2.2.4 Engine Output Characteristics
  • 2.2.5 Cylinder Pressure Variations
  • 2.3 Engine Modelling
  • 2.3.1 Engine Kinematics
  • 2.3.2 Engine Torque
  • 2.3.3 A Simplified Model
  • 2.3.4 The Flywheel
  • 2.4 Multi-cylinder Engines
  • 2.4.1 Firing Order
  • 2.4.2 Engine Torque
  • 2.4.3 Quasi-Steady Engine Torque
  • 2.5 Engine Torque Maps
  • 2.5.1 Engine Dynamometers
  • 2.5.2 Chassis Dynamometers
  • 2.5.3 Engine Torque-Speed Characteristics
  • 2.6 Magic Torque (MT) Formula for Engine Torque
  • 2.6.1 Converting Part Throttle Curves
  • 2.6.2 The MT Formula
  • 2.6.3 Interpretation
  • 2.7 Engine Management System
  • 2.7.1 Construction
  • 2.7.2 Sensors
  • 2.7.3 Maps and Look-up Tables
  • 2.7.4 Calibration
  • 2.8 Net Output Power
  • 2.8.1 Engine Mechanical Efficiency
  • 2.8.2 Accessory Drives
  • 2.8.3 Environmental Effects
  • 2.9 Conclusion
  • 2.10 Review Questions
  • 2.11 Problems
  • Further Reading
  • References
  • 3 Vehicle Longitudinal Dynamics
  • 3.1 Introduction
  • 3.2 Torque Generators
  • 3.2.1 Internal Combustion Engines
  • 3.2.2 Electric Motors
  • 3.3 Tractive Force
  • 3.3.1 Tyre Force Generation.
  • 3.3.2 Mathematical Relations for Tractive Force
  • 3.3.3 Traction Diagrams
  • 3.4 Resistive Forces
  • 3.4.1 Rolling Resistance
  • 3.4.2 Vehicle Aerodynamics
  • 3.4.3 Slopes
  • 3.4.4 Resistance Force Diagrams
  • 3.4.5 Coast Down Test
  • 3.5 Vehicle Constant Power Performance (CPP)
  • 3.5.1 Maximum Power Delivery
  • 3.5.2 Continuous Gear-Ratio Assumption
  • 3.5.3 Governing Equations
  • 3.5.4 Closed Form Solution
  • 3.5.5 Numerical Solutions
  • 3.5.6 Power Requirements
  • 3.5.7 Time of Travel and Distance
  • 3.5.8 Maximum Speed
  • 3.6 Constant Torque Performance (CTP)
  • 3.6.1 Closed Form Solution
  • 3.6.2 Numerical Solutions
  • 3.7 Fixed Throttle Performance (FTP)
  • 3.7.1 Gearshift and Traction Force
  • 3.7.2 Acceleration, Speed and Distance
  • 3.7.3 Shift Times
  • 3.7.4 Maximum Speed at Each Gear
  • 3.7.5 Best Acceleration Performance
  • 3.7.6 Power Consumption
  • 3.8 Throttle Pedal Cycle Performance (PCP)
  • 3.9 Effect of Rotating Masses
  • 3.9.1 Corrections to Former Analyses
  • 3.10 Tyre Slip
  • 3.11 Performance on a Slope
  • 3.11.1 Constant Power Performance (CPP)
  • 3.11.2 Constant Torque Performance (CTP)
  • 3.11.3 Fixed Throttle (FT)
  • 3.11.4 Variable Slopes
  • 3.12 Vehicle Coast Down
  • 3.12.1 Constant Rolling Resistance
  • 3.12.2 Rolling Resistance as a Function of Speed
  • 3.12.3 Inertia of Rotating Masses
  • 3.13 Driveline Losses
  • 3.13.1 Component Efficiencies
  • 3.13.2 Torque Flow Direction
  • 3.13.3 Effect of Rolling Resistance
  • 3.14 Conclusion
  • 3.15 Review Questions
  • 3.16 Problems
  • Further Reading
  • References
  • 4 Transmissions
  • 4.1 Introduction
  • 4.2 The Need for a Gearbox
  • 4.3 Design of Gearbox Ratios
  • 4.3.1 Lowest Gear
  • 4.3.2 Highest Gear
  • 4.3.3 Intermediate Gears
  • 4.3.4 Other Influencing Factors
  • 4.4 Gearbox Kinematics and Tooth Numbers
  • 4.4.1 Normal Gears
  • 4.4.2 Epicyclic Gear Sets.
  • 4.5 Manual Transmissions
  • 4.5.1 Construction and Operation
  • 4.5.2 Dry Clutches
  • 4.5.3 Diaphragm Springs
  • 4.5.4 Clutch Engagement Dynamics
  • 4.6 Automatic Transmissions
  • 4.6.1 Conventional Automatics
  • 4.6.2 AMTs
  • 4.6.3 DCTs
  • 4.7 CVTs
  • 4.7.1 Classification
  • 4.7.2 Friction CVTs
  • 4.7.3 Ratcheting CVTs
  • 4.7.4 Non-Mechanical CVTs
  • 4.7.5 Idling and Launch
  • 4.8 Conclusion
  • 4.9 Review Questions
  • 4.10 Problems
  • Further Reading
  • References
  • 5 Fuel Consumption
  • 5.1 Introduction
  • 5.2 Engine Energy Consumption
  • 5.2.1 BSFC Maps
  • 5.2.2 BSFC and Engine Efficiency
  • 5.3 Driving Cycles
  • 5.3.1 Typical Driving Cycles
  • 5.3.2 Calculations
  • 5.3.3 Vehicle Tests
  • 5.4 Vehicle Fuel Consumption
  • 5.4.1 Map-free Fuel Consumption
  • 5.4.2 Map-based Fuel Consumption
  • 5.4.3 Effect of Rotating Masses
  • 5.5 Shifting Effects
  • 5.5.1 Effect of Shifting on EOP
  • 5.5.2 Efficient Operating Points
  • 5.6 Software
  • 5.6.1 Solution Methodologies
  • 5.6.2 ADVISOR®
  • 5.7 Automated Gearshifts
  • 5.7.1 Engine State
  • 5.7.2 Driver's Intentions
  • 5.7.3 Combined Shifting
  • 5.7.4 Controller
  • 5.7.5 Multigear Transmission Concept
  • 5.8 Other Solutions for Fuel Efficiency
  • 5.8.1 Powertrain Component Improvements
  • 5.8.2 Lightweight Vehicles
  • 5.8.3 Engine
  • 5.8.4 Transmission
  • 5.9 Conclusion
  • 5.10 Review Questions
  • 5.11 Problems
  • Further Reading
  • References
  • 6 Driveline Dynamics
  • 6.1 Introduction
  • 6.2 Modelling Driveline Dynamics
  • 6.2.1 Modelling Methods
  • 6.2.2 Linear Versus Non-linear Models
  • 6.2.3 Software Use
  • 6.3 Bond Graph Models of Driveline Components
  • 6.3.1 The Engine
  • 6.3.2 The Clutch
  • 6.3.3 The Transmission
  • 6.3.4 Propeller and Drive Shafts
  • 6.3.5 The Differential
  • 6.3.6 The Wheel
  • 6.3.7 Vehicle
  • 6.4 Driveline Models
  • 6.4.1 Full Driveline Model
  • 6.4.2 Straight-Ahead Motion.
  • 6.4.3 Rigid Body Model
  • 6.4.4 Driveline with Clutch Compliance
  • 6.4.5 Driveline with Driveshaft Compliance
  • 6.4.6 Driveline with Clutch and Driveshaft Compliances
  • 6.5 Analysis
  • 6.5.1 Effect of Clutch Compliance
  • 6.5.2 Effect of Driveshaft Compliance
  • 6.5.3 Effect of Clutch and Driveshaft Compliances
  • 6.5.4 Frequency Responses
  • 6.5.5 Improvements
  • 6.6 Conclusion
  • 6.7 Review Questions
  • 6.8 Problems
  • Further Reading
  • References
  • 7 Hybrid Electric Vehicles
  • 7.1 Introduction
  • 7.2 Types of Hybrid Electric Vehicles
  • 7.2.1 Basic Classification
  • 7.2.2 Basic Modes of Operation
  • 7.2.3 Other Derivatives
  • 7.2.4 Degree of Hybridization
  • 7.3 Power Split Devices
  • 7.3.1 Simple PSD
  • 7.3.2 EM Compound PSD
  • 7.4 HEV Component Characteristics
  • 7.4.1 The IC Engine
  • 7.4.2 Electric Machines
  • 7.4.3 The Battery
  • 7.5 HEV Performance Analysis
  • 7.5.1 Series HEV
  • 7.5.2 Parallel HEV
  • 7.6 HEV Component Sizing
  • 7.6.1 General Considerations
  • 7.6.2 Sizing for Performance
  • 7.6.3 Optimum Sizing
  • 7.7 Power Management
  • 7.7.1 Control Potential
  • 7.7.2 Control
  • 7.8 Conclusion
  • 7.9 Review Questions
  • 7.10 Problems
  • Further Reading
  • References
  • Appendix: An Introduction to Bond Graph Modelling
  • A.1 Basic Concept
  • A.2 Standard Elements
  • A.2.1 Sources
  • A.2.2 Passive Elements
  • A.2.3 Two Port Elements
  • A.2.4 Junctions
  • A.3 Constructing Bond Graphs
  • A.4 Equations of Motion
  • A.4.1 Causality
  • A.4.2 Assignment Procedure
  • A.4.3 Bond Graph Numbering
  • A.4.4 Component Equations
  • A.4.5 Bond Graph Simplifications
  • A.4.6 Derivation of Equations of Motion
  • Index.