Probability, random variables, and random processes theory and signal processing applications
Probability, Random Variables, and Random Processes is a comprehensive textbook on probability theory for engineers that provides a more rigorous mathematical framework than is usually encountered in undergraduate courses. It is intended for first-year graduate students who have some familiarity wit...
Autor principal: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Hoboken, NJ :
Wiley
2012, c2013.
|
Edición: | 1st ed |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009849075806719 |
Tabla de Contenidos:
- Intro
- PROBABILITY, RANDOM VARIABLES, AND RANDOM PROCESSES
- CONTENTS
- PREFACE
- NOTATION
- 1 Overview and Background
- 1.1 Introduction
- 1.1.1 Signals, Signal Processing, and Communications
- 1.1.2 Probability, Random Variables, and Random Vectors
- 1.1.3 Random Sequences and Random Processes
- 1.1.4 Delta Functions
- 1.2 Deterministic Signals and Systems
- 1.2.1 Continuous Time
- 1.2.2 Discrete Time
- 1.2.3 Discrete-Time Filters
- 1.2.4 State-Space Realizations
- 1.3 Statistical Signal Processing with MATLAB®
- 1.3.1 Random Number Generation
- 1.3.2 Filtering
- Problems
- Further Reading
- PART I Probability, Random Variables, and Expectation
- 2 Probability Theory
- 2.1 Introduction
- 2.2 Sets and Sample Spaces
- 2.3 Set Operations
- 2.4 Events and Fields
- 2.5 Summary of a Random Experiment
- 2.6 Measure Theory
- 2.7 Axioms of Probability
- 2.8 Basic Probability Results
- 2.9 Conditional Probability
- 2.10 Independence
- 2.11 Bayes' Formula
- 2.12 Total Probability
- 2.13 Discrete Sample Spaces
- 2.14 Continuous Sample Spaces
- 2.15 Nonmeasurable Subsets of R
- Problems
- Further Reading
- 3 Random Variables
- 3.1 Introduction
- 3.2 Functions and Mappings
- 3.3 Distribution Function
- 3.4 Probability Mass Function
- 3.5 Probability Density Function
- 3.6 Mixed Distributions
- 3.7 Parametric Models for Random Variables
- 3.8 Continuous Random Variables
- 3.8.1 Gaussian Random Variable (Normal)
- 3.8.2 Log-Normal Random Variable
- 3.8.3 Inverse Gaussian Random Variable (Wald)
- 3.8.4 Exponential Random Variable (One-Sided)
- 3.8.5 Laplace Random Variable (Double-Sided Exponential)
- 3.8.6 Cauchy Random Variable
- 3.8.7 Continuous Uniform Random Variable
- 3.8.8 Triangular Random Variable
- 3.8.9 Rayleigh Random Variable
- 3.8.10 Rice Random Variable.
- 3.8.11 Gamma Random Variable (Erlang for r ∈ N)
- 3.8.12 Beta Random Variable (Arcsine for α = β = 1/2, Power Function for β = 1)
- 3.8.13 Pareto Random Variable
- 3.8.14 Weibull Random Variable
- 3.8.15 Logistic Random Variable (Sigmoid for {μ = 0, α = 1})
- 3.8.16 Chi Random Variable (Maxwell-Boltzmann, Half-Normal)
- 3.8.17 Chi-Square Random Variable
- 3.8.18 F-Distribution
- 3.8.19 Student's t Distribution
- 3.8.20 Extreme Value Distribution (Type I: Gumbel)
- 3.9 Discrete Random Variables
- 3.9.1 Bernoulli Random Variable
- 3.9.2 Binomial Random Variable
- 3.9.3 Geometric Random Variable (with Support Z+ or N)
- 3.9.4 Negative Binomial Random Variable (Pascal)
- 3.9.5 Poisson Random Variable
- 3.9.6 Hypergeometric Random Variable
- 3.9.7 Discrete Uniform Random Variable
- 3.9.8 Logarithmic Random Variable (Log-Series)
- 3.9.9 Zeta Random Variable (Zipf)
- Problems
- Further Reading
- 4 Multiple Random Variables
- 4.1 Introduction
- 4.2 Random Variable Approximations
- 4.2.1 Binomial Approximation of Hypergeometric
- 4.2.2 Poisson Approximation of Binomial
- 4.2.3 Gaussian Approximations
- 4.2.4 Gaussian Approximation of Binomial
- 4.2.5 Gaussian Approximation of Poisson
- 4.2.6 Gaussian Approximation of Hypergeometric
- 4.3 Joint and Marginal Distributions
- 4.4 Independent Random Variables
- 4.5 Conditional Distribution
- 4.6 Random Vectors
- 4.6.1 Bivariate Uniform Distribution
- 4.6.2 Multivariate Gaussian Distribution
- 4.6.3 Multivariate Student's t Distribution
- 4.6.4 Multinomial Distribution
- 4.6.5 Multivariate Hypergeometric Distribution
- 4.6.6 Bivariate Exponential Distributions
- 4.7 Generating Dependent Random Variables
- 4.8 Random Variable Transformations
- 4.8.1 Transformations of Discrete Random Variables
- 4.8.2 Transformations of Continuous Random Variables.
- 4.9 Important Functions of Two Random Variables
- 4.9.1 Sum: Z = X + Y
- 4.9.2 Difference: Z = X - Y
- 4.9.3 Product: Z = XY
- 4.9.4 Quotient (Ratio): Z = X/Y
- 4.10 Transformations of Random Variable Families
- 4.10.1 Gaussian Transformations
- 4.10.2 Exponential Transformations
- 4.10.3 Chi-Square Transformations
- 4.11 Transformations of Random Vectors
- 4.12 Sample Mean and Sample Variance S2
- 4.13 Minimum, Maximum, and Order Statistics
- 4.14 Mixtures
- Problems
- Further Reading
- 5 Expectation and Moments
- 5.1 Introduction
- 5.2 Expectation and Integration
- 5.3 Indicator Random Variable
- 5.4 Simple Random Variable
- 5.5 Expectation for Discrete Sample Spaces
- 5.6 Expectation for Continuous Sample Spaces
- 5.7 Summary of Expectation
- 5.8 Functional View of the Mean
- 5.9 Properties of Expectation
- 5.10 Expectation of a Function
- 5.11 Characteristic Function
- 5.12 Conditional Expectation
- 5.13 Properties of Conditional Expectation
- 5.14 Location Parameters: Mean, Median, and Mode
- 5.15 Variance, Covariance, and Correlation
- 5.16 Functional View of the Variance
- 5.17 Expectation and the Indicator Function
- 5.18 Correlation Coefficients
- 5.19 Orthogonality
- 5.20 Correlation and Covariance Matrices
- 5.21 Higher Order Moments and Cumulants
- 5.22 Functional View of Skewness
- 5.23 Functional View of Kurtosis
- 5.24 Generating Functions
- 5.25 Fourth-Order Gaussian Moment
- 5.26 Expectations of Nonlinear Transformations
- Problems
- Further Reading
- PART II Random Processes, Systems, and Parameter Estimation
- 6 Random Processes
- 6.1 Introduction
- 6.2 Characterizations of a Random Process
- 6.3 Consistency and Extension
- 6.4 Types of Random Processes
- 6.5 Stationarity
- 6.6 Independent and Identically Distributed
- 6.7 Independent Increments
- 6.8 Martingales.
- 6.9 Markov Sequence
- 6.10 Markov Process
- 6.11 Random Sequences
- 6.11.1 Bernoulli Sequence
- 6.11.2 Bernoulli Scheme
- 6.11.3 Independent Sequences
- 6.11.4 Bernoulli Random Walk
- 6.11.5 Binomial Counting Sequence
- 6.12 Random Processes
- 6.12.1 Poisson Counting Process
- 6.12.2 Random Telegraph Signal
- 6.12.3 Wiener Process
- 6.12.4 Gaussian Process
- 6.12.5 Pulse Amplitude Modulation
- 6.12.6 Random Sine Signals
- Problems
- Further Reading
- 7 Stochastic Convergence, Calculus, and Decompositions
- 7.1 Introduction
- 7.2 Stochastic Convergence
- 7.3 Laws of Large Numbers
- 7.4 Central Limit Theorem
- 7.5 Stochastic Continuity
- 7.6 Derivatives and Integrals
- 7.7 Differential Equations
- 7.8 Difference Equations
- 7.9 Innovations and Mean-Square Predictability
- 7.10 Doob-Meyer Decomposition
- 7.11 Karhunen-Lo`eve Expansion
- Problems
- Further Reading
- 8 Systems, Noise, and Spectrum Estimation
- 8.1 Introduction
- 8.2 Correlation Revisited
- 8.3 Ergodicity
- 8.4 Eigenfunctions of RXX(τ)
- 8.5 Power Spectral Density
- 8.6 Power Spectral Distribution
- 8.7 Cross-Power Spectral Density
- 8.8 Systems with Random Inputs
- 8.8.1 Nonlinear Systems
- 8.8.2 Linear Systems
- 8.9 Passband Signals
- 8.10 White Noise
- 8.11 Bandwidth
- 8.12 Spectrum Estimation
- 8.12.1 Periodogram
- 8.12.2 Smoothed Periodogram
- 8.12.3 Modified Periodogram
- 8.13 Parametric Models
- 8.13.1 Autoregressive Model
- 8.13.2 Moving-Average Model
- 8.13.3 Autoregressive Moving-Average Model
- 8.14 System Identification
- Problems
- Further Reading
- 9 Sufficient Statistics and Parameter Estimation
- 9.1 Introduction
- 9.2 Statistics
- 9.3 Sufficient Statistics
- 9.4 Minimal Sufficient Statistic
- 9.5 Exponential Families
- 9.6 Location-Scale Families
- 9.7 Complete Statistic
- 9.8 Rao-Blackwell Theorem.
- 9.9 Lehmann-SchefféTheorem
- 9.10 Bayes Estimation
- 9.11 Mean-Square-Error Estimation
- 9.12 Mean-Absolute-Error Estimation
- 9.13 Orthogonality Condition
- 9.14 Properties of Estimators
- 9.14.1 Unbiased
- 9.14.2 Consistent
- 9.14.3 Efficient
- 9.15 Maximum A Posteriori Estimation
- 9.16 Maximum Likelihood Estimation
- 9.17 Likelihood Ratio Test
- 9.18 Expectation-Maximization Algorithm
- 9.19 Method of Moments
- 9.20 Least-Squares Estimation
- 9.21 Properties of LS Estimators
- 9.21.1 Minimum ξWLS
- 9.21.2 Uniqueness
- 9.21.3 Orthogonality
- 9.21.4 Unbiased
- 9.21.5 Covariance Matrix
- 9.21.6 Efficient: Achieves CRLB
- 9.21.7 BLU Estimator
- 9.22 Best Linear Unbiased Estimation
- 9.23 Properties of BLU Estimators
- Problems
- Further Reading
- A Note on Part III of the Book
- APPENDICES Introduction to Appendices
- A Summaries of Univariate Parametric Distributions
- A.1 Notation
- A.2 Further Reading
- A.3 Continuous Random Variables
- A.3.1 Beta (Arcsine for α = β = 1/2, Power Function for β = 1)
- A.3.2 Cauchy
- A.3.3 Chi
- A.3.4 Chi-Square
- A.3.5 Exponential (Shifted by c)
- A.3.6 Extreme Value (Type I: Gumbel)
- A.3.7 F-Distribution
- A.3.8 Gamma (Erlang for r ∈ N with Γ (r ) = (r - 1)!)
- A.3.9 Gaussian (Normal)
- A.3.10 Half-Normal (Folded Normal)
- A.3.11 Inverse Gaussian (Wald)
- A.3.12 Laplace (Double-Sided Exponential)
- A.3.13 Logistic (Sigmoid for {μ = 0, α = 1})
- A.3.14 Log-Normal
- A.3.15 Maxwell-Boltzmann
- A.3.16 Pareto
- A.3.17 Rayleigh
- A.3.18 Rice
- A.3.19 Student's t Distribution
- A.3.20 Triangular
- A.3.21 Uniform (Continuous)
- A.3.22 Weibull
- A.4 Discrete Random Variables
- A.4.1 Bernoulli (with Support {0, 1})
- A.4.2 Bernoulli (Symmetric with Support {-1, 1})
- A.4.3 Binomial
- A.4.4 Geometric (with Support Z+)
- A.4.5 Geometric (Shifted with Support N).
- A.4.6 Hypergeometric.