RF and microwave engineering fundamentals of wireless communications

This book provides a fundamental and practical introduction to radio frequency and microwave engineering and physical aspects of wireless communication In this book, the author addresses a wide range of radio-frequency and microwave topics with emphasis on physical aspects including EM and voltage w...

Descripción completa

Detalles Bibliográficos
Autor principal: Gustrau, Frank (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Chichester, U.K. : Wiley 2012.
Edición:2nd ed
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009849072606719
Tabla de Contenidos:
  • Intro
  • RF and Microwave Engineering
  • Contents
  • Preface
  • List of Abbreviations
  • List of Symbols
  • Chapter 1 Introduction
  • 1.1 Radiofrequency and Microwave Applications
  • 1.2 Frequency Bands
  • 1.3 Physical Phenomena in the High Frequency Domain
  • 1.3.1 Electrically Short Transmission Line
  • 1.3.2 Transmission Line with Length Greater than One-Tenth of Wavelength
  • 1.3.3 Radiation and Antennas
  • 1.4 Outline of the Following Chapters
  • References
  • Chapter 2 Electromagnetic Fields and Waves
  • 2.1 Electric and Magnetic Fields
  • 2.1.1 Electrostatic Fields
  • 2.1.2 Steady Electric Current and Magnetic Fields
  • 2.1.3 Differential Vector Operations
  • 2.2 Maxwell's Equations
  • 2.2.1 Differential Form in the Time Domain
  • 2.2.2 Differential Form for Harmonic Time Dependence
  • 2.2.3 Integral Form
  • 2.2.4 Constitutive Relations and Material Properties
  • 2.2.5 Interface Conditions
  • 2.3 Classification of Electromagnetic Problems
  • 2.3.1 Static Fields
  • 2.3.2 Quasi-Static Fields
  • 2.3.3 Coupled Electromagnetic Fields
  • 2.4 Skin Effect
  • 2.5 Electromagnetic Waves
  • 2.5.1 Wave Equation and Plane Waves
  • 2.5.2 Polarization of Waves
  • 2.5.3 Reflection and Refraction
  • 2.5.4 Spherical Waves
  • 2.6 Summary
  • 2.7 Problems
  • References
  • Further Reading
  • Chapter 3 Transmission Line Theory and Transient Signals on Lines
  • 3.1 Transmission Line Theory
  • 3.1.1 Equivalent Circuit of a Line Segment
  • 3.1.2 Telegrapher's Equation
  • 3.1.3 Voltage and Current Waves on Transmission Lines
  • 3.1.4 Load-Terminated Transmission Line
  • 3.1.5 Input Impedance
  • 3.1.6 Loss-less Transmission Lines
  • 3.1.7 Low-loss Transmission Lines
  • 3.1.8 Transmission Line with Different Terminations
  • 3.1.9 Impedance Transformation with Loss-less Lines
  • 3.1.10 Reflection Coefficient
  • 3.1.11 Smith Chart.
  • 3.2 Transient Signals on Transmission Lines
  • 3.2.1 Step Function
  • 3.2.2 Rectangular Function
  • 3.3 Eye Diagram
  • 3.4 Summary
  • 3.5 Problems
  • References
  • Further Reading
  • Chapter 4 Transmission Lines and Waveguides
  • 4.1 Overview
  • 4.2 Coaxial Line
  • 4.2.1 Specific Inductance and Characteristic Impedance
  • 4.2.2 Attenuation of Low-loss Transmission Lines
  • 4.2.3 Technical Frequency Range
  • 4.2.4 Areas of Application
  • 4.3 Microstrip Line
  • 4.3.1 Characteristic Impedance and Effective Permittivity
  • 4.3.2 Dispersion and Technical Frequency Range
  • 4.3.3 Areas of Application
  • 4.4 Stripline
  • 4.4.1 Characteristic Impedance
  • 4.4.2 Technical Frequency Range
  • 4.5 Coplanar Line
  • 4.5.1 Characteristic Impedance and Effective Permittivity
  • 4.5.2 Coplanar Waveguide over Ground
  • 4.5.3 Coplanar Waveguides and Air Bridges
  • 4.5.4 Technical Frequency Range
  • 4.5.5 Areas of Application
  • 4.6 Rectangular Waveguide
  • 4.6.1 Electromagnetic Waves between Electric Side Walls
  • 4.6.2 Dominant Mode (TE10)
  • 4.6.3 Higher Order Modes
  • 4.6.4 Areas of Application
  • 4.6.5 Excitation of Waveguide Modes
  • 4.6.6 Cavity Resonators
  • 4.7 Circular Waveguide
  • 4.8 Two-Wire Line
  • 4.8.1 Characteristic Impedance
  • 4.8.2 Areas of Application
  • 4.9 Three-Conductor Transmission Line
  • 4.9.1 Even and Odd Modes
  • 4.9.2 Characteristic Impedances and Propagation Constants
  • 4.9.3 Line Termination for Even and Odd Modes
  • 4.10 Problems
  • References
  • Chapter 5 Scattering Parameters
  • 5.1 Multi-Port Network Representations
  • 5.2 Normalized Power Waves
  • 5.3 Scattering Parameters and Power
  • 5.4 S-Parameter Representation of Network Properties
  • 5.4.1 Matching
  • 5.4.2 Complex Conjugate Matching
  • 5.4.3 Reciprocity
  • 5.4.4 Symmetry
  • 5.4.5 Passive and Loss-less Circuits
  • 5.4.6 Unilateral Circuits.
  • 5.4.7 Specific Characteristics of Three-Port Networks
  • 5.5 Calculation of S-Parameters
  • 5.5.1 Reflection Coefficients
  • 5.5.2 Transmission Coefficients
  • 5.5.3 Renormalization
  • 5.6 Signal Flow Method
  • 5.6.1 One-Port Network/Load Termination
  • 5.6.2 Source
  • 5.6.3 Two-Port Network
  • 5.6.4 Three-Port Network
  • 5.6.5 Four-Port Network
  • 5.7 S-Parameter Measurement
  • 5.8 Problems
  • References
  • Further Reading
  • Chapter 6 RF Components and Circuits
  • 6.1 Equivalent Circuits of Concentrated Passive Components
  • 6.1.1 Resistor
  • 6.1.2 Capacitor
  • 6.1.3 Inductor
  • 6.2 Transmission Line Resonator
  • 6.2.1 Half-Wave Resonator
  • 6.2.2 Quarter-Wave Resonator
  • 6.3 Impedance Matching
  • 6.3.1 LC-Networks
  • 6.3.2 Matching Using Distributed Elements
  • 6.4 Filter
  • 6.4.1 Classical LC-Filter Design
  • 6.4.2 Butterworth Filter
  • 6.5 Transmission Line Filter
  • 6.5.1 Edge-Coupled Line Filter
  • 6.5.2 Hairpin Filter
  • 6.5.3 Stepped Impedance Filter
  • 6.5.4 Parasitic Box Resonance
  • 6.5.5 Waveguide Filter
  • 6.6 Circulator
  • 6.7 Power Divider
  • 6.7.1 Wilkinson Power Divider
  • 6.7.2 Unequal Split Power Divider
  • 6.8 Branchline Coupler
  • 6.8.1 Conventional 3dB Coupler
  • 6.8.2 Unequal Split Branchline Coupler
  • 6.9 Rat Race Coupler
  • 6.10 Directional Coupler
  • 6.11 Balanced-to-Unbalanced Circuits
  • 6.12 Electronic Circuits
  • 6.12.1 Mixers
  • 6.12.2 Amplifiers and Oscillators
  • 6.13 RF Design Software
  • 6.13.1 RF Circuit Simulators
  • 6.13.2 Three-Dimensional Electromagnetic Simulators
  • 6.14 Problems
  • References
  • Further Reading
  • Chapter 7 Antennas
  • 7.1 Fundamental Parameters
  • 7.1.1 Nearfield and Farfield
  • 7.1.2 Isotropic Radiator
  • 7.1.3 Radiation Pattern and Related Parameters
  • 7.1.4 Impedance Matching and Bandwidth
  • 7.2 Standard Types of Antennas
  • 7.3 Mathematical Treatment of the Hertzian Dipole.
  • 7.4 Wire Antennas
  • 7.4.1 Half-Wave Dipole
  • 7.4.2 Monopole
  • 7.4.3 Concepts for Reducing Antenna Height
  • 7.5 Planar Antennas
  • 7.5.1 Rectangular Patch Antenna
  • 7.5.2 Circularly Polarizing Patch Antennas
  • 7.5.3 Planar Dipole and Inverted-F Antenna
  • 7.6 Antenna Arrays
  • 7.6.1 Single Element Radiation Pattern and Array Factor
  • 7.6.2 Phased Array Antennas
  • 7.6.3 Beam Forming
  • 7.7 Modern Antenna Concepts
  • 7.8 Problems
  • References
  • Further Reading
  • Chapter 8 Radio Wave Propagation
  • 8.1 Propagation Mechanisms
  • 8.1.1 Reflection and Refraction
  • 8.1.2 Absorption
  • 8.1.3 Diffraction
  • 8.1.4 Scattering
  • 8.1.5 Doppler Effect
  • 8.2 Basic Propagation Models
  • 8.2.1 Free Space Loss
  • 8.2.2 Attenuation of Air
  • 8.2.3 Plane Earth Loss
  • 8.2.4 Point-to-Point Radio Links
  • 8.2.5 Layered Media
  • 8.3 Path Loss Models
  • 8.3.1 Multipath Environment
  • 8.3.2 Clutter Factor Model
  • 8.3.3 Okumura-Hata Model
  • 8.3.4 Physical Models and Numerical Methods
  • 8.4 Problems
  • References
  • Further Reading
  • Appendix A
  • A.1 Coordinate Systems
  • A.1.1 Cartesian Coordinate System
  • A.1.2 Cylindrical Coordinate System
  • A.1.3 Spherical Coordinate System
  • A.2 Logarithmic Representation
  • A.2.1 Dimensionless Quantities
  • A.2.2 Relative and Absolute Ratios
  • A.2.3 Link Budget
  • Index.