Machine Learning for Industrial Applications

The main goal of the book is to provide a comprehensive and accessible guide that empowers readers to understand, apply, and leverage machine learning algorithms and techniques effectively in real-world scenarios. Welcome to the exciting world of machine learning! In recent years, machine learning h...

Descripción completa

Detalles Bibliográficos
Autor principal: Prakash, Kolla Bhanu (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated 2024.
Edición:1st ed
Colección:Next-generation computing and communication engineering
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009847336806719
Tabla de Contenidos:
  • Cover
  • Series Page
  • Title Page
  • Copyright Page
  • Dedication Page
  • Contents
  • Preface
  • Chapter 1 Overview of Machine Learning
  • 1.1 Introduction
  • 1.2 Sorts of Machine Learning
  • 1.3 Regulated Gaining Knowledge of Dog and Human
  • 1.4 Solo Learning
  • 1.5 Support Mastering
  • 1.6 Bundles or Applications of Machine Learning
  • 1.6.1 Photograph Reputation
  • 1.6.2 Discourse Recognition
  • 1.6.3 Traffic Prediction
  • 1.6.4 Item Recommendations
  • 1.6.5 Self-Using Vehicles
  • 1.6.6 Electronic Mail Unsolicited Mail And Malware Filtering
  • 1.6.7 Computerized Private Assistant
  • 1.6.8 Online Fraud Detection
  • 1.6.9 Securities Exchange Buying and Selling
  • 1.6.10 Clinical Prognosis
  • 1.6.11 Computerized Language Translation
  • 1.6.12 Online Media Features
  • 1.6.13 Feeling Evaluation
  • 1.6.14 Robotizing Employee Get Right of Entry to Manipulate
  • 1.6.15 Marine Flora and Fauna Protection
  • 1.6.16 Anticipate Potential Coronary Heart Failure
  • 1.6.17 Directing Healthcare Efficiency and Scientific Offerings
  • 1.6.18 Transportation and Commuting (Uber)
  • 1.6.19 Dynamic Pricing
  • 1.6.19.1 How Does Uber Decide the Cost of Your Excursion?
  • 1.6.20 Online Video Streaming (Netflix)
  • 1.7 Challenges in Machine Learning
  • 1.8 Limitations of Machine Learning
  • 1.9 Projects in Machine Learning
  • References
  • Chapter 2 Machine Learning Building Blocks
  • 2.1 Data Collection
  • 2.1.1 Importing the Data from CSV Files
  • 2.2 Data Preparation
  • 2.2.1 Data Exploration
  • 2.2.2 Data Pre-Processing
  • 2.3 Data Wrangling
  • 2.4 Data Analysis
  • 2.5 Model Selection
  • 2.6 Model Building
  • 2.7 Model Evaluation
  • 2.7.1 Classification Metrics
  • 2.7.1.1 Accuracy
  • 2.7.1.2 Precision
  • 2.7.1.3 Recall
  • 2.7.2 Regression Metrics
  • 2.7.2.1 Mean Squared Error
  • 2.7.2.2 Root Mean Squared Error
  • 2.7.2.3 Mean Absolute Error
  • 2.8 Deployment.
  • 2.8.1 Machine Learning Projects
  • 2.8.2 Spam Detection Using Machine Learning
  • 2.8.3 Spam Detection for YouTube Comments Using Naïve Bayes Classifier
  • 2.8.4 Fake News Detection
  • 2.8.5 House Price Prediction
  • 2.8.6 Gold Price Prediction
  • Bibliography
  • Chapter 3 Multilayer Perceptron (in Neural Networks)
  • 3.1 Multilayer Perceptron for Digit Classification
  • 3.1.1 Implementation of MLP using TensorFlow for Classifying Image Data
  • 3.2 Training Multilayer Perceptron
  • 3.3 Backpropagation
  • References
  • Chapter 4 Kernel Machines
  • 4.1 Different Kernels and Their Applications
  • 4.2 Some Other Kernel Functions
  • 4.2.1 Gaussian Radial Basis Function (RBF)
  • 4.2.2 Laplace RBF Kernel
  • 4.2.3 Hyperbolic Tangent Kernel
  • 4.2.4 Bessel Function of the First-Kind Kernel
  • 4.2.5 ANOVA Radial Basis Kernel
  • 4.2.6 Linear Splines Kernel in One Dimension
  • 4.2.7 Exponential Kernel
  • 4.2.8 Kernels in Support Vector Machine
  • References
  • Chapter 5 Linear and Rule-Based Models
  • 5.1 Least Squares Methods
  • 5.2 The Perceptron
  • 5.2.1 Bias
  • 5.2.2 Perceptron Weighted Sum
  • 5.2.3 Activation Function
  • 5.2.3.1 Types of Activation Functions
  • 5.2.4 Perceptron Training
  • 5.2.5 Online Learning
  • 5.2.6 Perceptron Training Error
  • 5.3 Support Vector Machines
  • 5.4 Linearity with Kernel Methods
  • References
  • Chapter 6 Distance-Based Models
  • 6.1 Introduction
  • 6.1.1 Distance-Based Clustering
  • 6.2 K-Means Algorithm
  • 6.2.1 K-Means Algorithm Working Process
  • 6.3 Elbow Method
  • 6.4 K-Median
  • 6.4.1 Algorithm
  • 6.5 K-Medoids, PAM (Partitioning Around Medoids)
  • 6.5.1 Advantages
  • 6.5.2 Drawbacks
  • 6.5.3 Algorithm
  • 6.6 CLARA (Clustering Large Applications)
  • 6.6.1 Advantages
  • 6.6.2 Disadvantages
  • 6.7 CLARANS (Clustering Large Applications Based on Randomized Search)
  • 6.7.1 Advantages
  • 6.7.2 Disadvantages.
  • 6.7.3 Algorithm
  • 6.8 Hierarchical Clustering
  • 6.9 Agglomerative Nesting Hierarchical Clustering (AGNES)
  • 6.10 DIANA
  • References
  • Chapter 7 Model Ensembles
  • 7.1 Bagging
  • 7.1.1 Advantages
  • 7.1.2 Disadvantages
  • 7.1.3 Bagging Workage
  • 7.1.4 Algorithm
  • 7.2 Boosting
  • 7.2.1 Types of Boosting
  • 7.2.2 Advantages
  • 7.2.3 Disadvantages
  • 7.2.4 Algorithm
  • 7.3 Stacking
  • 7.3.1 Architecture of Stacking
  • 7.3.2 Stacking Ensemble Family
  • References
  • Chapter 8 Binary and Beyond Binary Classification
  • 8.1 Binary Classification
  • 8.2 Logistic Regression
  • 8.3 Support Vector Machine
  • 8.4 Estimating Class Probabilities
  • 8.5 Confusion Matrix
  • 8.6 Beyond Binary Classification
  • 8.7 Multi-Class Classification
  • 8.8 Multi-Label Classification
  • Reference
  • Chapter 9 Model Selection
  • 9.1 Model Selection Considerations
  • 9.1.1 What Do We Care Approximately When Choosing the Final Version?
  • 9.2 Model Selection Strategies
  • 9.3 Types of Model Selection
  • 9.3.1 Methods of Re-Sampling
  • 9.3.2 Random Separation
  • 9.3.3 Time Divide
  • 9.3.4 K-Fold Cross-Validation
  • 9.3.5 Stratified K-Fold
  • 9.3.6 Bootstrap
  • 9.3.7 Possible Steps
  • 9.3.8 Akaike Information Criterion (AIC)
  • 9.3.9 Bayesian Information Criterion (BIC)
  • 9.3.10 Minimum Definition Length (MDL)
  • 9.3.11 Building Risk Reduction (SRM)
  • 9.3.12 Excessive Installation (Overfitting)
  • 9.4 The Principle of Parsimony
  • 9.5 Examples of Model Selection Criterions
  • 9.6 Other Popular Properties
  • 9.7 Key Considerations
  • 9.8 Model Validation
  • 9.8.1 Why is Model Validation Important?
  • 9.8.2 How to Validate the Model
  • 9.8.3 What is a Model Validation Test?
  • 9.8.4 Benefits of Modeling Validation
  • 9.8.5 Model Validation Traps
  • 9.8.6 Data Verification
  • 9.8.7 Model Performance and Validation
  • 9.9 Self-Driving Cars
  • 9.10 K-Fold Cross Validation.
  • 9.11 No One-Size-Fits-All Model Validation
  • 9.12 Validation Strategies
  • 9.13 K-Fold Cross-Validation
  • 9.14 Capture Confirmation Using Hold-Out Validation
  • 9.15 Comparison of Validation Strategy
  • References
  • Chapter 10 Support Vector Machines
  • 10.1 History
  • 10.2 Model
  • 10.3 Kinds of Support Vector Machine
  • 10.3.1 Straight SVM
  • 10.3.2 Non-Direct SVM
  • 10.3.3 Benefits of Help Vector Machines
  • 10.3.4 The Negative Marks of Help Vector Machines
  • 10.3.5 Applications
  • 10.4 Hyperplane and Support Vectors Inside the SVM Set of Rules
  • 10.4.1 Hyperplane
  • 10.5 Support Vectors
  • 10.6 SVM Kernel
  • 10.7 How Can It Function?
  • 10.7.1 See the Right Hyperplane (Circumstance 1)
  • 10.7.2 See the Appropriate Hyperplane (Situation 2)
  • 10.7.3 Distinguish the Right Hyper-Airplane (Situation 3)
  • 10.7.4 Would We Have the Option to Organize Models (Circumstance 4)?
  • 10.7.5 Track Down the Hyperplane to Isolate Into Guidelines (Situation 5)
  • 10.8 SVM for Classification
  • 10.9 SVM for Regression
  • 10.10 Python Implementation of Support Vector Machine
  • 10.10.1 Data Pre-Taking Care of Step
  • 10.10.2 Fitting the SVM Classifier to the Readiness Set
  • 10.10.2.1 Outcome
  • 10.10.3 Anticipating the Investigated Set Final Product
  • 10.10.3.1 Yield
  • 10.10.4 Fostering the Disarray Lattice
  • 10.10.5 Picturing the Preparation Set Outcome
  • 10.10.5.1 Yield
  • 10.10.6 Imagining the Investigated Set Outcome
  • 10.10.6.1 Yield
  • 10.10.7 Part or Kernel
  • 10.10.8 Support Vector Machine (SVM) Code in Python
  • 10.10.9 Intricacy of SVM
  • References
  • Chapter 11 Clustering
  • 11.1 Example
  • 11.2 Kinds of Clustering
  • 11.2.1 Hard Clustering
  • 11.2.2 Delicate Clustering
  • 11.2.2.1 Dividing Clustering or Partitioning Clustering
  • 11.2.2.2 Thickness Essentially Based Clustering or Density Fundamentally Based Clustering.
  • 11.2.2.3 Transport Model-Based Clustering or Distribution Model-Based Clustering
  • 11.2.2.4 Progressive Clustering or Hierarchical Clustering
  • 11.2.2.5 Fluffy Clustering or Fuzzy Clustering
  • 11.3 What are the Utilization of Clustering?
  • 11.4 Models
  • 11.5 Uses of Clustering
  • 11.5.1 In Character of Most Tumor Cells
  • 11.5.2 In Web Crawlers Like Google
  • 11.5.3 Shopper Segmentation
  • 11.5.4 In Biology
  • 11.5.5 In Land Use
  • 11.6 Bunching Algorithms or Clustering Algorithms
  • 11.6.1 K-Means Clustering
  • 11.6.2 Mean-Shift Clustering
  • 11.6.3 Thickness or Density-Based Spatial Clustering of Application with Noise (DBSCAN)
  • 11.6.4 Assumption Maximization Clustering Utilizing Gaussian Combination Models
  • 11.6.5 Agglomerative Hierarchical Clustering
  • 11.7 Instances of Clustering Algorithms
  • 11.7.1 Library Setup
  • 11.7.2 Grouping or Clustering Dataset
  • 11.7.3 Fondness or Affinity Propagation
  • 11.7.4 Agglomerative Clustering
  • 11.7.5 BIRCH
  • 11.7.6 DBSCAN
  • 11.7.7 K-Means
  • 11.7.8 Mini-Batch K-Means
  • 11.7.9 Mean Shift
  • 11.7.10 OPTICS
  • 11.7.11 Unearthly or Spectral Clustering
  • 11.7.12 Gaussian Mixture Model
  • 11.8 Python Implementation of K-Means
  • 11.8.1 Stacking the Data
  • 11.8.2 Plotting the Information
  • 11.8.3 Choosing the Component
  • 11.8.4 Clustering
  • 11.8.5 Clustering Results
  • 11.8.6 WCSS and Elbow Technique
  • 11.8.7 Uses of K-Mean Bunching
  • 11.8.8 Benefits of K-Means
  • 11.8.9 Bad Marks of K-MEAN
  • References
  • Chapter 12 Reinforcement Learning
  • 12.1 Model
  • 12.2 Terms Utilized in Reinforcement Learning
  • 12.3 Key Elements of Reinforcement Learning
  • 12.4 Instances of Reinforcement Learning
  • 12.5 Advantages of Reinforcement Learning
  • 12.6 Challenges with Reinforcement Learning
  • 12.7 Sorts of Reinforcement
  • 12.7.1 Positive
  • 12.7.2 Negative.
  • 12.8 What are the Useful Utilizations of Reinforcement Learning?.