Data Quality in the Age of AI Building a Foundation for AI Strategy and Data Culture

Detalles Bibliográficos
Otros Autores: Jones, Andrew, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Birmingham, England : Packt Publishing Ltd [2024]
Edición:First edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009842237706719
Tabla de Contenidos:
  • Intro
  • Executive summary
  • Target audience
  • Understanding data quality
  • Defining data quality
  • Assessing data quality
  • Unlocking AI's potential with data
  • High cost of poor data quality
  • Measuring the quality of your data
  • Improving data quality at the source
  • Incentivizing data producers
  • Decentralizing your data: Quality by design
  • Case studies: Positive impact of data quality
  • DoorDash
  • Checkout.com
  • Cultivating a data culture that values quality
  • Adopting a product mindset
  • Prioritizing quality over quantity
  • Assigning roles and responsibilities
  • Embedding data governance
  • Conclusion: Embracing a quality-driven data culture
  • About the author
  • About the technical reviewers
  • Additional reading
  • Bibliography.