Water-resources engineering
Water-Resources Engineering provides comprehensive coverage of hydraulics, hydrology, and water-resources planning and management. Presented from first principles, the material is rigorous, relevant to the practice of water resources engineering, and reinforced by detailed presentations of design ap...
Otros Autores: | , , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Boston :
Pearson
[2013]
|
Edición: | Third, international edition |
Colección: | Always learning.
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009841930506719 |
Tabla de Contenidos:
- Cover
- Contents
- Preface
- 1 Introduction
- 1.1 Water-Resources Engineering
- 1.2 The Hydrologic Cycle
- 1.3 Designof Water-Resource Systems
- 1.3.1 Water-Control Systems
- 1.3.2 Water-Use Systems
- 1.3.3 Supporting Federal Agencies in the United States
- Problem
- 2 Fundamentals of Flow in Closed Conduits
- 2.1 Introduction
- 2.2 Single Pipelines
- 2.2.1 Steady-State Continuity Equation
- 2.2.2 Steady-State Momentum Equation
- 2.2.3 Steady-State Energy Equation
- 2.2.3.1 Energy and hydraulic grade lines
- 2.2.3.2 Velocity profile
- 2.2.3.3 Head losses in transitions and fittings
- 2.2.3.4 Head losses in noncircular conduits
- 2.2.3.5 Empirical friction-loss formulae
- 2.2.4 Water Hammer
- 2.3 Pipe Networks
- 2.3.1 Nodal Method
- 2.3.2 Loop Method
- 2.3.3 Application of Computer Programs
- 2.4 Pumps
- 2.4.1 AffinityLaws
- 2.4.2 Pump Selection
- 2.4.2.1 Commercially available pumps
- 2.4.2.2 System characteristics
- 2.4.2.3 Limits on pump location
- 2.4.3 Multiple-Pump Systems
- 2.4.4 Variable-Speed Pumps
- Problems
- 3 Design of Water-Distribution Systems
- 3.1 Introduction
- 3.2 Water Demand
- 3.2.1 Per-Capita Forecast Model
- 3.2.1.1 Estimation of per-capita demand
- 3.2.1.2 Estimation of population
- 3.2.2 Temporal Variations in Water Demand
- 3.2.3 Fire Demand
- 3.2.4 Design Flows
- 3.3 Components of Water-Distribution Systems
- 3.3.1 Pipelines
- 3.3.1.1 Minimumsize
- 3.3.1.2 Service lines
- 3.3.1.3 Pipe materials
- 3.3.2 Pumps
- 3.3.3 Valves
- 3.3.4 Meters
- 3.3.5 Fire Hydrants
- 3.3.6 Water-Storage Reservoirs
- 3.4 Performance Criteria for Water-Distribution Systems
- 3.4.1 Service Pressures
- 3.4.2 Allowable Velocities
- 3.4.3 Water Quality
- 3.4.4 Network Analysis
- 3.5 Building Water-Supply Systems
- 3.5.1 Specification of Design Flows.
- 3.5.2 Specification of Minimum Pressures
- 3.5.3 Determination of Pipe Diameters
- Problems
- 4 Fundamentals of Flow in Open Channels
- 4.1 Introduction
- 4.2 Basic Principles
- 4.2.1 Steady-State Continuity Equation
- 4.2.2 Steady-State Momentum Equation
- 4.2.2.1 Darcy-Weisbach equation
- 4.2.2.2 Manning equation
- 4.2.2.3 Other equations
- 4.2.2.4 Velocity distribution
- 4.2.3 Steady-State Energy Equation
- 4.2.3.1 Energy grade line
- 4.2.3.2 Specific energy
- 4.3 Water-Surface Profiles
- 4.3.1 Profile Equation
- 4.3.2 Classification of Water-Surface Profiles
- 4.3.3 Hydraulic Jump
- 4.3.4 Computation of Water-Surface Profiles
- 4.3.4.1 Direct-integration method
- 4.3.4.2 Direct-step method
- 4.3.4.3 Standard-step method
- 4.3.4.4 Practical considerations
- 4.3.4.5 Profiles across bridges
- Problems
- 5 Design of Drainage Channels
- 5.1 Introduction
- 5.2 Basic Principles
- 5.2.1 Best Hydraulic Section
- 5.2.2 Boundary Shear Stress
- 5.2.3 Cohesive versus Noncohesive Materials
- 5.2.4 Bends
- 5.2.5 Channel Slopes
- 5.2.6 Freeboard
- 5.3 Design of Channels with Rigid Linings
- 5.4 Design of Channels with Flexible Linings
- 5.4.1 General Design Procedure
- 5.4.2 Vegetative Linings and Bare Soil
- 5.4.3 RECP Linings
- 5.4.4 Riprap, Cobble, and Gravel Linings
- 5.4.5 Gabions
- 5.5 CompositeLinings
- Problems
- 6 Design of Sanitary Sewers
- 6.1 Introduction
- 6.2 Quantity of Wastewater
- 6.2.1 Residential Sources
- 6.2.2 Nonresidential Sources
- 6.2.3 Inflow and Infiltration (I/I)
- 6.2.4 Peaking Factors
- 6.3 Hydraulics of Sewers
- 6.3.1 Manning Equation with Constant n
- 6.3.2 Manning Equation with Variable n
- 6.3.3 Self-Cleansing
- 6.3.4 Scour Prevention
- 6.3.5 Design Computations for Diameter and Slope
- 6.3.6 Hydraulics of Manholes
- 6.4 System Design Criteria
- 6.4.1 System Layout.
- 6.4.2 Pipe Material
- 6.4.3 Depth of Sanitary Sewer
- 6.4.4 Diameter and Slope of Pipes
- 6.4.5 Hydraulic Criteria
- 6.4.6 Manholes
- 6.4.7 Pump Stations
- 6.4.8 Force Mains
- 6.4.9 Hydrogen-Sulfide Control
- 6.4.10 Combined Sewers
- 6.5 Design Computations
- 6.5.1 Design Aids
- 6.5.1.1 Manning's n
- 6.5.1.2 Minimum slope for self-cleansing
- 6.5.2 Procedure for System Design
- Problems
- 7 Design of Hydraulic Structures
- 7.1 Introduction
- 7.2 Culverts
- 7.2.1 Hydraulics
- 7.2.1.1 Submerged entrances
- 7.2.1.2 Unsubmerged entrances
- 7.2.2 Design Constraints
- 7.2.3 Sizing Calculations
- 7.2.3.1 Fixed-headwater method
- 7.2.3.2 Fixed-flow method
- 7.2.3.3 Minimum-performance method
- 7.2.4 Roadway Overtopping
- 7.2.5 Riprap/Outlet Protection
- 7.3 Gates
- 7.3.1 Free Discharge
- 7.3.2 Submerged Discharge
- 7.3.3 Empirical Equations
- 7.4 Weirs
- 7.4.1 Sharp-Crested Weirs
- 7.4.1.1 Rectangular weirs
- 7.4.1.2 V-notchweirs
- 7.4.1.3 Compound weirs
- 7.4.1.4 Other types of sharp-crested weirs
- 7.4.2 Broad-Crested Weirs
- 7.4.2.1 Rectangular weirs
- 7.4.2.2 Compound weirs
- 7.4.2.3 Gabionweirs
- 7.5 Spillways
- 7.5.1 Uncontrolled Spillways
- 7.5.2 Controlled (Gated) Spillways
- 7.5.2.1 Gates seated on the spillway crest
- 7.5.2.2 Gates seated downstream of the spillway crest
- 7.6 Stilling Basins
- 7.6.1 Type Selection
- 7.6.2 Design Procedure
- 7.7 Dams and Reservoirs
- 7.7.1 Types of Dams
- 7.7.2 Reservoir Storage
- 7.7.2.1 Sediment accumulation
- 7.7.2.2 Determination of storage requirements
- 7.7.3 Hydropower
- 7.7.3.1 Turbines
- 7.7.3.2 Turbine performance
- 7.7.3.3 Feasibility of hydropower
- Problems
- 8 Probability and Statistics in Water-Resources Engineering
- 8.1 Introduction
- 8.2 Probability Distributions
- 8.2.1 Discrete Probability Distributions.
- 8.2.2 Continuous Probability Distributions
- 8.2.3 Mathematical Expectation and Moments
- 8.2.4 Return Period
- 8.2.5 Common Probability Functions
- 8.2.5.1 Binomial distribution
- 8.2.5.2 Geometric distribution
- 8.2.5.3 Poisson distribution
- 8.2.5.4 Exponential distribution
- 8.2.5.5 Gamma/Pearson Type III distribution
- 8.2.5.6 Normal distribution
- 8.2.5.7 Log-normal distribution
- 8.2.5.8 Uniform distribution
- 8.2.5.9 Extreme-value distributions
- 8.2.5.10 Chi-square distribution
- 8.3 Analysis of Hydrologic Data
- 8.3.1 Estimation of Population Distribution
- 8.3.1.1 Probability distribution of observed data
- 8.3.1.2 Hypothesis tests
- 8.3.1.3 Model selection criteria
- 8.3.2 Estimation of Population Parameters
- 8.3.2.1 Method of moments
- 8.3.2.2 Maximum-likelihood method
- 8.3.2.3 Method of L-moments
- 8.3.3 Frequency Analysis
- 8.3.3.1 Normal distribution
- 8.3.3.2 Log-normal distribution
- 8.3.3.3 Gamma/Pearson Type III distribution
- 8.3.3.4 Log-Pearson Type III distribution
- 8.3.3.5 Extreme-value Type I distribution
- 8.3.3.6 General extreme-value (GEV) distribution
- 8.4 Uncertainty Analysis
- Problems
- 9 Fundamentals of Surface-Water Hydrology I: Rainfall and Abstractions
- 9.1 Introduction
- 9.2 Rainfall
- 9.2.1 Measurement of Rainfall
- 9.2.2 Statistics of Rainfall Data
- 9.2.2.1 Rainfall statistics in the United States
- 9.2.2.2 Secondary estimation of IDF curves
- 9.2.3 Spatial Averaging and Interpolation of Rainfall
- 9.2.4 Design Rainfall
- 9.2.4.1 Return period
- 9.2.4.2 Rainfall duration
- 9.2.4.3 Rainfall depth
- 9.2.4.4 Temporal distribution
- 9.2.4.5 Spatial distribution
- 9.2.5 Extreme Rainfall
- 9.2.5.1 Rational estimation method
- 9.2.5.2 Statistical estimation method
- 9.2.5.3 World-record precipitation amounts
- 9.2.5.4 Probable maximum storm.
- 9.3 Rainfall Abstractions
- 9.3.1 Interception
- 9.3.2 Depression Storage
- 9.3.3 Infiltration
- 9.3.3.1 The infiltration process
- 9.3.3.2 Horton model
- 9.3.3.3 Green-Ampt model
- 9.3.3.4 NRCS curve-number model
- 9.3.3.5 Comparison of infiltration models
- 9.3.4 Rainfall Excess on Composite Areas
- 9.4 Baseflow
- Problems
- 10 Fundamentals of Surface-Water Hydrology II: Runoff
- 10.1 Introduction
- 10.2 Mechanisms of Surface Runoff
- 10.3 Time of Concentration
- 10.3.1 Overland Flow
- 10.3.1.1 Kinematic-wave equation
- 10.3.1.2 NRCS method
- 10.3.1.3 Kirpich equation
- 10.3.1.4 Izzard equation
- 10.3.1.5 Kerby equation
- 10.3.2 Channel Flow
- 10.3.3 Accuracy of Estimates
- 10.4 Peak-Runoff Models
- 10.4.1 The Rational Method
- 10.4.2 NRCS-TR55 Method
- 10.5 Continuous-Runoff Models
- 10.5.1 Unit-Hydrograph Theory
- 10.5.2 Instantaneous Unit Hydrograph
- 10.5.3 Unit-Hydrograph Models
- 10.5.3.1 Snyder unit-hydrograph model
- 10.5.3.2 NRCS dimensionless unit hydrograph
- 10.5.3.3 Accuracy of unit-hydrograph models
- 10.5.4 Time-Area Models
- 10.5.5 Kinematic-Wave Model
- 10.5.6 Nonlinear-Reservoir Model
- 10.5.7 Santa Barbara Urban Hydrograph Model
- 10.5.8 Extreme Runoff Events
- 10.6 Routing Models
- 10.6.1 Hydrologic Routing
- 10.6.1.1 Modified Puls method
- 10.6.1.2 Muskingum method
- 10.6.2 Hydraulic Routing
- 10.7 Water-Quality Models
- 10.7.1 Event-Mean Concentrations
- 10.7.2 Regression Equations
- 10.7.2.1 USGS model
- 10.7.2.2 EPA model
- Problems
- 11 Design of Stormwater-Collection Systems
- 11.1 Introduction
- 11.2 Street Gutters
- 11.3 Inlets
- 11.3.1 CurbInlets
- 11.3.2 Grate Inlets
- 11.3.3 Combination Inlets
- 11.3.4 Slotted Inlets
- 11.4 Roadside and Median Channels
- 11.5 Storm Sewers
- 11.5.1 Calculation of Design Flow Rates
- 11.5.2 Pipe Sizing and Selection.
- 11.5.3 Manholes.