Water-resources engineering

Water-Resources Engineering provides comprehensive coverage of hydraulics, hydrology, and water-resources planning and management. Presented from first principles, the material is rigorous, relevant to the practice of water resources engineering, and reinforced by detailed presentations of design ap...

Descripción completa

Detalles Bibliográficos
Otros Autores: Chin, David A., author (author), Mazumdar, Asis, colaborador (colaborador), Roy, Pankaj Kumar, colaborador
Formato: Libro electrónico
Idioma:Inglés
Publicado: Boston : Pearson [2013]
Edición:Third, international edition
Colección:Always learning.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009841930506719
Tabla de Contenidos:
  • Cover
  • Contents
  • Preface
  • 1 Introduction
  • 1.1 Water-Resources Engineering
  • 1.2 The Hydrologic Cycle
  • 1.3 Designof Water-Resource Systems
  • 1.3.1 Water-Control Systems
  • 1.3.2 Water-Use Systems
  • 1.3.3 Supporting Federal Agencies in the United States
  • Problem
  • 2 Fundamentals of Flow in Closed Conduits
  • 2.1 Introduction
  • 2.2 Single Pipelines
  • 2.2.1 Steady-State Continuity Equation
  • 2.2.2 Steady-State Momentum Equation
  • 2.2.3 Steady-State Energy Equation
  • 2.2.3.1 Energy and hydraulic grade lines
  • 2.2.3.2 Velocity profile
  • 2.2.3.3 Head losses in transitions and fittings
  • 2.2.3.4 Head losses in noncircular conduits
  • 2.2.3.5 Empirical friction-loss formulae
  • 2.2.4 Water Hammer
  • 2.3 Pipe Networks
  • 2.3.1 Nodal Method
  • 2.3.2 Loop Method
  • 2.3.3 Application of Computer Programs
  • 2.4 Pumps
  • 2.4.1 AffinityLaws
  • 2.4.2 Pump Selection
  • 2.4.2.1 Commercially available pumps
  • 2.4.2.2 System characteristics
  • 2.4.2.3 Limits on pump location
  • 2.4.3 Multiple-Pump Systems
  • 2.4.4 Variable-Speed Pumps
  • Problems
  • 3 Design of Water-Distribution Systems
  • 3.1 Introduction
  • 3.2 Water Demand
  • 3.2.1 Per-Capita Forecast Model
  • 3.2.1.1 Estimation of per-capita demand
  • 3.2.1.2 Estimation of population
  • 3.2.2 Temporal Variations in Water Demand
  • 3.2.3 Fire Demand
  • 3.2.4 Design Flows
  • 3.3 Components of Water-Distribution Systems
  • 3.3.1 Pipelines
  • 3.3.1.1 Minimumsize
  • 3.3.1.2 Service lines
  • 3.3.1.3 Pipe materials
  • 3.3.2 Pumps
  • 3.3.3 Valves
  • 3.3.4 Meters
  • 3.3.5 Fire Hydrants
  • 3.3.6 Water-Storage Reservoirs
  • 3.4 Performance Criteria for Water-Distribution Systems
  • 3.4.1 Service Pressures
  • 3.4.2 Allowable Velocities
  • 3.4.3 Water Quality
  • 3.4.4 Network Analysis
  • 3.5 Building Water-Supply Systems
  • 3.5.1 Specification of Design Flows.
  • 3.5.2 Specification of Minimum Pressures
  • 3.5.3 Determination of Pipe Diameters
  • Problems
  • 4 Fundamentals of Flow in Open Channels
  • 4.1 Introduction
  • 4.2 Basic Principles
  • 4.2.1 Steady-State Continuity Equation
  • 4.2.2 Steady-State Momentum Equation
  • 4.2.2.1 Darcy-Weisbach equation
  • 4.2.2.2 Manning equation
  • 4.2.2.3 Other equations
  • 4.2.2.4 Velocity distribution
  • 4.2.3 Steady-State Energy Equation
  • 4.2.3.1 Energy grade line
  • 4.2.3.2 Specific energy
  • 4.3 Water-Surface Profiles
  • 4.3.1 Profile Equation
  • 4.3.2 Classification of Water-Surface Profiles
  • 4.3.3 Hydraulic Jump
  • 4.3.4 Computation of Water-Surface Profiles
  • 4.3.4.1 Direct-integration method
  • 4.3.4.2 Direct-step method
  • 4.3.4.3 Standard-step method
  • 4.3.4.4 Practical considerations
  • 4.3.4.5 Profiles across bridges
  • Problems
  • 5 Design of Drainage Channels
  • 5.1 Introduction
  • 5.2 Basic Principles
  • 5.2.1 Best Hydraulic Section
  • 5.2.2 Boundary Shear Stress
  • 5.2.3 Cohesive versus Noncohesive Materials
  • 5.2.4 Bends
  • 5.2.5 Channel Slopes
  • 5.2.6 Freeboard
  • 5.3 Design of Channels with Rigid Linings
  • 5.4 Design of Channels with Flexible Linings
  • 5.4.1 General Design Procedure
  • 5.4.2 Vegetative Linings and Bare Soil
  • 5.4.3 RECP Linings
  • 5.4.4 Riprap, Cobble, and Gravel Linings
  • 5.4.5 Gabions
  • 5.5 CompositeLinings
  • Problems
  • 6 Design of Sanitary Sewers
  • 6.1 Introduction
  • 6.2 Quantity of Wastewater
  • 6.2.1 Residential Sources
  • 6.2.2 Nonresidential Sources
  • 6.2.3 Inflow and Infiltration (I/I)
  • 6.2.4 Peaking Factors
  • 6.3 Hydraulics of Sewers
  • 6.3.1 Manning Equation with Constant n
  • 6.3.2 Manning Equation with Variable n
  • 6.3.3 Self-Cleansing
  • 6.3.4 Scour Prevention
  • 6.3.5 Design Computations for Diameter and Slope
  • 6.3.6 Hydraulics of Manholes
  • 6.4 System Design Criteria
  • 6.4.1 System Layout.
  • 6.4.2 Pipe Material
  • 6.4.3 Depth of Sanitary Sewer
  • 6.4.4 Diameter and Slope of Pipes
  • 6.4.5 Hydraulic Criteria
  • 6.4.6 Manholes
  • 6.4.7 Pump Stations
  • 6.4.8 Force Mains
  • 6.4.9 Hydrogen-Sulfide Control
  • 6.4.10 Combined Sewers
  • 6.5 Design Computations
  • 6.5.1 Design Aids
  • 6.5.1.1 Manning's n
  • 6.5.1.2 Minimum slope for self-cleansing
  • 6.5.2 Procedure for System Design
  • Problems
  • 7 Design of Hydraulic Structures
  • 7.1 Introduction
  • 7.2 Culverts
  • 7.2.1 Hydraulics
  • 7.2.1.1 Submerged entrances
  • 7.2.1.2 Unsubmerged entrances
  • 7.2.2 Design Constraints
  • 7.2.3 Sizing Calculations
  • 7.2.3.1 Fixed-headwater method
  • 7.2.3.2 Fixed-flow method
  • 7.2.3.3 Minimum-performance method
  • 7.2.4 Roadway Overtopping
  • 7.2.5 Riprap/Outlet Protection
  • 7.3 Gates
  • 7.3.1 Free Discharge
  • 7.3.2 Submerged Discharge
  • 7.3.3 Empirical Equations
  • 7.4 Weirs
  • 7.4.1 Sharp-Crested Weirs
  • 7.4.1.1 Rectangular weirs
  • 7.4.1.2 V-notchweirs
  • 7.4.1.3 Compound weirs
  • 7.4.1.4 Other types of sharp-crested weirs
  • 7.4.2 Broad-Crested Weirs
  • 7.4.2.1 Rectangular weirs
  • 7.4.2.2 Compound weirs
  • 7.4.2.3 Gabionweirs
  • 7.5 Spillways
  • 7.5.1 Uncontrolled Spillways
  • 7.5.2 Controlled (Gated) Spillways
  • 7.5.2.1 Gates seated on the spillway crest
  • 7.5.2.2 Gates seated downstream of the spillway crest
  • 7.6 Stilling Basins
  • 7.6.1 Type Selection
  • 7.6.2 Design Procedure
  • 7.7 Dams and Reservoirs
  • 7.7.1 Types of Dams
  • 7.7.2 Reservoir Storage
  • 7.7.2.1 Sediment accumulation
  • 7.7.2.2 Determination of storage requirements
  • 7.7.3 Hydropower
  • 7.7.3.1 Turbines
  • 7.7.3.2 Turbine performance
  • 7.7.3.3 Feasibility of hydropower
  • Problems
  • 8 Probability and Statistics in Water-Resources Engineering
  • 8.1 Introduction
  • 8.2 Probability Distributions
  • 8.2.1 Discrete Probability Distributions.
  • 8.2.2 Continuous Probability Distributions
  • 8.2.3 Mathematical Expectation and Moments
  • 8.2.4 Return Period
  • 8.2.5 Common Probability Functions
  • 8.2.5.1 Binomial distribution
  • 8.2.5.2 Geometric distribution
  • 8.2.5.3 Poisson distribution
  • 8.2.5.4 Exponential distribution
  • 8.2.5.5 Gamma/Pearson Type III distribution
  • 8.2.5.6 Normal distribution
  • 8.2.5.7 Log-normal distribution
  • 8.2.5.8 Uniform distribution
  • 8.2.5.9 Extreme-value distributions
  • 8.2.5.10 Chi-square distribution
  • 8.3 Analysis of Hydrologic Data
  • 8.3.1 Estimation of Population Distribution
  • 8.3.1.1 Probability distribution of observed data
  • 8.3.1.2 Hypothesis tests
  • 8.3.1.3 Model selection criteria
  • 8.3.2 Estimation of Population Parameters
  • 8.3.2.1 Method of moments
  • 8.3.2.2 Maximum-likelihood method
  • 8.3.2.3 Method of L-moments
  • 8.3.3 Frequency Analysis
  • 8.3.3.1 Normal distribution
  • 8.3.3.2 Log-normal distribution
  • 8.3.3.3 Gamma/Pearson Type III distribution
  • 8.3.3.4 Log-Pearson Type III distribution
  • 8.3.3.5 Extreme-value Type I distribution
  • 8.3.3.6 General extreme-value (GEV) distribution
  • 8.4 Uncertainty Analysis
  • Problems
  • 9 Fundamentals of Surface-Water Hydrology I: Rainfall and Abstractions
  • 9.1 Introduction
  • 9.2 Rainfall
  • 9.2.1 Measurement of Rainfall
  • 9.2.2 Statistics of Rainfall Data
  • 9.2.2.1 Rainfall statistics in the United States
  • 9.2.2.2 Secondary estimation of IDF curves
  • 9.2.3 Spatial Averaging and Interpolation of Rainfall
  • 9.2.4 Design Rainfall
  • 9.2.4.1 Return period
  • 9.2.4.2 Rainfall duration
  • 9.2.4.3 Rainfall depth
  • 9.2.4.4 Temporal distribution
  • 9.2.4.5 Spatial distribution
  • 9.2.5 Extreme Rainfall
  • 9.2.5.1 Rational estimation method
  • 9.2.5.2 Statistical estimation method
  • 9.2.5.3 World-record precipitation amounts
  • 9.2.5.4 Probable maximum storm.
  • 9.3 Rainfall Abstractions
  • 9.3.1 Interception
  • 9.3.2 Depression Storage
  • 9.3.3 Infiltration
  • 9.3.3.1 The infiltration process
  • 9.3.3.2 Horton model
  • 9.3.3.3 Green-Ampt model
  • 9.3.3.4 NRCS curve-number model
  • 9.3.3.5 Comparison of infiltration models
  • 9.3.4 Rainfall Excess on Composite Areas
  • 9.4 Baseflow
  • Problems
  • 10 Fundamentals of Surface-Water Hydrology II: Runoff
  • 10.1 Introduction
  • 10.2 Mechanisms of Surface Runoff
  • 10.3 Time of Concentration
  • 10.3.1 Overland Flow
  • 10.3.1.1 Kinematic-wave equation
  • 10.3.1.2 NRCS method
  • 10.3.1.3 Kirpich equation
  • 10.3.1.4 Izzard equation
  • 10.3.1.5 Kerby equation
  • 10.3.2 Channel Flow
  • 10.3.3 Accuracy of Estimates
  • 10.4 Peak-Runoff Models
  • 10.4.1 The Rational Method
  • 10.4.2 NRCS-TR55 Method
  • 10.5 Continuous-Runoff Models
  • 10.5.1 Unit-Hydrograph Theory
  • 10.5.2 Instantaneous Unit Hydrograph
  • 10.5.3 Unit-Hydrograph Models
  • 10.5.3.1 Snyder unit-hydrograph model
  • 10.5.3.2 NRCS dimensionless unit hydrograph
  • 10.5.3.3 Accuracy of unit-hydrograph models
  • 10.5.4 Time-Area Models
  • 10.5.5 Kinematic-Wave Model
  • 10.5.6 Nonlinear-Reservoir Model
  • 10.5.7 Santa Barbara Urban Hydrograph Model
  • 10.5.8 Extreme Runoff Events
  • 10.6 Routing Models
  • 10.6.1 Hydrologic Routing
  • 10.6.1.1 Modified Puls method
  • 10.6.1.2 Muskingum method
  • 10.6.2 Hydraulic Routing
  • 10.7 Water-Quality Models
  • 10.7.1 Event-Mean Concentrations
  • 10.7.2 Regression Equations
  • 10.7.2.1 USGS model
  • 10.7.2.2 EPA model
  • Problems
  • 11 Design of Stormwater-Collection Systems
  • 11.1 Introduction
  • 11.2 Street Gutters
  • 11.3 Inlets
  • 11.3.1 CurbInlets
  • 11.3.2 Grate Inlets
  • 11.3.3 Combination Inlets
  • 11.3.4 Slotted Inlets
  • 11.4 Roadside and Median Channels
  • 11.5 Storm Sewers
  • 11.5.1 Calculation of Design Flow Rates
  • 11.5.2 Pipe Sizing and Selection.
  • 11.5.3 Manholes.