Bayesian Statistics and Marketing
Autor principal: | |
---|---|
Otros Autores: | , |
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Newark :
John Wiley & Sons, Incorporated
2024.
|
Edición: | 2nd ed |
Colección: | WILEY SERIES in PROB and STATISTICS/see 1345/6,6214/5 Series
|
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009840471006719 |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- Chapter 1 Introduction
- 1.1 A Basic Paradigm for Marketing Problems
- 1.2 A Simple Example
- 1.3 Benefits and Costs of the Bayesian Approach
- 1.4 An Overview of Methodological Material and Case Studies
- 1.5 Approximate Bayes Methods and This Book
- 1.6 Computing and This Book
- Acknowledgments
- Chapter 2 Bayesian Essentials
- 2.1 Essential Concepts from Distribution Theory
- 2.2 The Goal of Inference and Bayes Theorem
- 2.2.1 Bayes Theorem
- 2.3 Conditioning and the Likelihood Principle
- 2.4 Prediction and Bayes
- 2.5 Summarizing the Posterior
- 2.6 Decision Theory, Risk, and the Sampling Properties of Bayes Estimators
- 2.7 Identification and Bayesian Inference
- 2.8 Conjugacy, Sufficiency, and Exponential Families
- 2.9 Regression and Multivariate Analysis Examples
- 2.9.1 Multiple Regression
- 2.9.2 Assessing Priors for Regression Models
- 2.9.3 Bayesian Inference for Covariance Matrices
- 2.9.4 Priors and the Wishart Distribution
- 2.9.5 Multivariate Regression
- 2.9.6 The Limitations of Conjugate Priors
- 2.10 Integration and Asymptotic Methods
- 2.11 Importance Sampling
- 2.11.1 GHK Method for Evaluation of Certain Integrals of MVN
- 2.12 Simulation Primer for Bayesian Problems
- 2.12.1 Uniform, Normal, and Gamma Generation
- 2.12.2 Truncated Distributions
- 2.12.3 Multivariate Normal and Student t Distributions
- 2.12.4 The Wishart and Inverted Wishart Distributions
- 2.12.5 Multinomial Distributions
- 2.12.6 Dirichlet Distribution
- 2.13 Simulation from Posterior of Multivariate Regression Model
- Chapter 3 MCMC Methods
- 3.1 MCMC Methods
- 3.2 A Simple Example: Bivariate Normal Gibbs Sampler
- 3.3 Some Markov Chain Theory
- 3.4 Gibbs Sampler
- 3.5 Gibbs Sampler for the SUR Regression Model
- 3.6 Conditional Distributions and Directed Graphs.
- 3.7 Hierarchical Linear Models
- 3.8 Data Augmentation and a Probit Example
- 3.9 Mixtures of Normals
- 3.9.1 Identification in Normal Mixtures
- 3.9.2 Performance of the Unconstrained Gibbs Sampler
- 3.10 Metropolis Algorithms
- 3.10.1 Independence Metropolis Chains
- 3.10.2 Random Walk Metropolis Chains
- 3.10.3 Scaling of the Random Walk Metropolis
- 3.11 Metropolis Algorithms Illustrated with the Multinomial Logit Model
- 3.12 Hybrid MCMC Methods
- 3.13 Diagnostics
- Chapter 4 Unit‐Level Models and Discrete Demand
- 4.1 Latent Variable Models
- 4.2 Multinomial Probit Model
- 4.2.1 Understanding the Autocorrelation Properties of the MNP Gibbs Sampler
- 4.2.2 The Likelihood for the MNP Model
- 4.3 Multivariate Probit Model
- 4.4 Demand Theory and Models Involving Discrete Choice
- 4.4.1 A Nonhomothetic Choice Model
- 4.4.2 Demand for Discrete Quantities
- 4.4.3 Demand for Variety
- Chapter 5 Hierarchical Models for Heterogeneous Units
- 5.1 Heterogeneity and Priors
- 5.2 Hierarchical Models
- 5.3 Inference for Hierarchical Models
- 5.4 A Hierarchical Multinomial Logit Example
- 5.5 Using Mixtures of Normals
- 5.5.1 A Hybrid Sampler
- 5.5.2 Identification of the Number of Mixture Components
- 5.5.3 Application to Hierarchical Models
- 5.6 Further Elaborations of the Normal Model of Heterogeneity
- 5.7 Diagnostic Checks of the First Stage Prior
- 5.8 Findings and Influence on Marketing Practice
- Chapter 6 Model Choice and Decision Theory
- 6.1 Model Selection
- 6.2 Bayes Factors in the Conjugate Setting
- 6.3 Asymptotic Methods for Computing Bayes Factors
- 6.4 Computing Bayes Factors Using Importance Sampling
- 6.5 Bayes Factors Using MCMC Draws from the Posterior
- 6.6 Bridge Sampling Methods
- 6.7 Posterior Model Probabilities with Unidentified Parameters
- 6.8 Chib's Method.
- 6.9 An Example of Bayes Factor Computation: Diagonal MNP models
- 6.10 Marketing Decisions and Bayesian Decision Theory
- 6.10.1 Plug‐In vs Full Bayes Approaches
- 6.10.2 Use of Alternative Information Sets
- 6.10.3 Valuation of Disaggregate Information
- 6.11 An Example of Bayesian Decision Theory: Valuing Household Purchase Information
- Chapter 7 Simultaneity
- 7.1 A Bayesian Approach to Instrumental Variables
- 7.2 Structural Models and Endogeneity/Simultaneity
- 7.2.1 Demand Model
- 7.2.2 Supply Model - Profit Maximizing Prices
- 7.2.3 Bayesian Estimation
- 7.3 Non‐Random Marketing Mix Variables
- 7.3.1 A General Framework
- 7.3.2 An Application to Detailing Allocation
- 7.3.3 Conditional Modeling Approach
- 7.3.4 Beyond the Conditional Model
- Chapter 8 A Bayesian Perspective on Machine Learning
- 8.1 Introduction
- 8.2 Regularization
- 8.2.1 The LASSO and Bayes
- 8.2.2 Discussion: Informative Regularizers
- 8.2.3 Bayesian Inference
- 8.3 Bagging
- 8.3.1 Bagging for Regression
- 8.3.2 Bagging, Bayesian Model Averaging and Ensembles
- 8.4 Boosting
- 8.4.1 Boosting as Bayes
- 8.5 Deep Learning
- 8.5.1 A Primer on Deep Learning
- 8.5.2 Bayes and Deep Learning
- 8.6 Applications
- 8.6.1 Bayes/ML for Flexible Heterogeneity
- 8.6.2 The Need for ML
- 8.6.3 Discussion
- Chapter 9 Bayesian Analysis for Text Data
- 9.1 Introduction
- 9.2 Consumer Demand
- 9.2.1 The Latent Dirichlet Allocation (LDA) Model
- 9.2.2 Full Gibbs Sampler
- 9.2.3 Processing Text Data for Analysis
- 9.2.4 Collapsed Gibbs Sampler
- 9.2.5 The Sentence Constrained LDA Model
- 9.2.6 Conjunctions and Punctuation
- 9.3 Integrated Models
- 9.3.1 Text and Conjoint Data
- 9.3.2 R Code for Text and Conjoint Data
- 9.3.3 Text and Product Ratings
- 9.3.4 Text and Scaled Response Data
- 9.4 Discussion.
- Chapter 10 Case Study 1: Analysis of Choice‐Based Conjoint Data Using A Hierarchical Logit Model
- 10.1 Choice‐Based Conjoint
- 10.2 A Random Coefficient Logit
- 10.3 Sign Constraints and Priors
- 10.4 The Camera Data
- 10.4.1 Panel Data in bayesm
- 10.5 Running the Model
- 10.6 Describing the Draws of Respondent Partworths
- 10.7 Predictive Posteriors
- 10.7.1 Respondent‐Level Parthworth Inferences
- 10.7.2 Posterior Predictive Distributions
- 10.8 COMPARISON OF STAN AND SAWTOOTH SOFTWARE TO BAYESM ROUTINES
- 10.8.1 Comparison to STAN
- 10.8.2 Comparison with Sawtooth Software
- Chapter 11 Case Study 2: WTP and Equilibrium Analysis with Conjoint Demand
- 11.1 The Demand for Product Features
- 11.1.1 The Standard Choice Model for Differentiated Product Demand
- 11.1.2 Estimating Demand
- 11.2 Conjoint Surveys and Demand Estimation
- 11.2.1 Conjoint Design
- 11.3 WTP Properly Defined
- 11.3.1 Pseudo‐WTP
- 11.3.2 Pseudo WTP for Heterogenous Consumers
- 11.3.3 True WTP
- 11.3.4 Problems with All WTP Measures
- 11.4 Nash Equilibrium Prices - Computation and Assumptions
- 11.4.1 Assumptions
- 11.4.2 A Standard Logit Model for Demand
- 11.4.3 Computing Equilibrium Prices
- 11.5 Camera Example
- 11.5.1 WTP Computations
- 11.5.2 Equilibrium Price Calculations
- 11.5.3 Lessons for Conjoint Design from WTP and Equilibrium Price Computations
- Chapter 12 Case Study 3: Scale Usage Heterogeneity
- 12.1 Background
- 12.2 Model
- 12.3 Priors and MCMC Algorithm
- 12.4 Data
- 12.4.1 Scale Usage Heterogeneity
- 12.4.2 Correlation Analysis
- 12.5 Discussion
- 12.6 R Implementation
- Chapter 13 Case Study 4: Volumetric Conjoint
- 13.1 Introduction
- 13.2 Model Development
- 13.3 Estimation
- 13.4 Empirical Analysis
- 13.4.1 Ice Cream
- 13.4.2 Frozen Pizza
- 13.5 Discussion
- 13.6 Using the Code
- 13.7 Concluding Remarks.
- Chapter 14 Case Study 5: Approximate Bayes and Personalized Pricing
- 14.1 Heterogeneity and Heterogeneous Treatment Effects
- 14.2 The Framework
- 14.2.1 Introducing the ML Element
- 14.3 Context and Data
- 14.4 Does the Bayesian Bootstrap Work?
- 14.5 A Bayesian Bootstrap Procedure for the HTE Logit
- 14.5.1 The Estimator
- 14.5.2 Results
- 14.6 Personalized Pricing
- A An Introduction to R and bayesm
- A.1 SETTING UP THE R ENVIRONMENT AND BAYESM
- A.1.1 Obtaining R
- A.1.2 Getting Started in RStudio
- A.1.3 Obtaining Help in RStudio
- A.1.4 Installing bayesm
- A.2 The R Language
- A.2.1 Using Built‐In Functions: Running a Regression
- A.2.2 Inspecting Objects and the R Workspace
- A.2.3 Vectors, Matrices, and Lists
- A.2.4 Accessing Elements and Subsetting Vectors, Arrays, and Lists
- A.2.5 Loops
- A.2.6 Implicit Loops
- A.2.7 Matrix Operations
- A.2.8 Other Useful Built‐In R Functions
- A.2.9 User‐defined Functions
- A.2.10 Debugging Functions
- A.2.11 Elementary Graphics
- A.2.12 System Information
- A.2.13 More Lessons Learned from Timing
- A.3 USING BAYESM
- A.4 OBTAINING HELP WITH BAYESM
- A.5 Tips on Using MCMC Methods
- A.6 Extending and Adapting Our Code
- References
- Index
- EULA.