R-Ticulate A Beginner's Guide to Data Analysis for Natural Scientists
Otros Autores: | , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Hoboken, New Jersey :
John Wiley & Sons, Inc
[2024]
|
Edición: | First edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009840466506719 |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- Foreword
- Preface
- About the Companion Website
- Chapter 1 Hypotheses, Variables, Data
- 1.1 Occam's Razor
- 1.2 Scientific Hypotheses
- 1.3 The Choice of a Software
- 1.3.1 First Steps in R
- 1.4 Variables
- 1.4.1 Variable Names and Values
- 1.4.2 Types of Variables
- 1.4.3 Predictor and Response Variables
- 1.5 Data Processing and Data Formats
- 1.5.1 The Long vs. the Wide Format
- 1.5.2 Choice of Variable, Dataset, and File Names
- 1.5.3 Adding, Removing, and Subsetting Variables and Data Frames
- 1.5.4 Aggregating Data
- 1.5.5 Working with Time and Strings
- Chapter 2 Measuring Variation
- 2.1 What Is Variation?
- 2.2 Treatment vs. Control
- 2.3 Systematic and Unsystematic Variation
- 2.4 The Signal‐to‐Noise Ratio
- 2.5 Measuring Variation Graphically
- 2.6 Measuring Variation Using Metrics
- 2.7 The Standard Error
- 2.8 Population vs. Sample
- Chapter 3 Distributions and Probabilities
- 3.1 Probability Distributions
- 3.2 Finding the Best Fitting Distribution for Sample Data
- 3.2.1 Graphical Tools
- 3.2.2 Goodness‐of‐Fit Tests
- 3.3 Quantiles
- 3.4 Probabilities
- 3.4.1 Density Functions (dnorm, dbinom,...)
- 3.4.2 Probability Distribution Functions (pnorm, pbinom,...)
- 3.4.3 Quantile Functions (qnorm, qbinom,...)
- 3.4.4 Random Sampling Functions (rnorm, rbinom,...)
- 3.5 The Normal Distribution
- 3.6 Central Limit Theorem
- 3.7 Test Statistics
- 3.7.1 Null and Alternative Hypotheses
- 3.7.2 The Alpha Threshold and Significance Levels
- 3.7.3 Type I and Type II Errors
- References
- Chapter 4 Replication and Randomisation
- 4.1 Replication
- 4.2 Statistical Independence
- 4.3 Randomisation
- 4.4 Randomisation in R
- 4.5 Spatial Replication and Randomisation in Observational Studies
- Chapter 5 Two‐Sample and One‐Sample Tests.
- 5.1 The t‐Statistic
- 5.2 Two Sample Tests: Comparing Two Groups
- 5.2.1 Student's t‐Test
- 5.2.1.1 Testing for Normality
- 5.2.1.2 What to Write in a Report or Paper and How to Visualise the Results of a t‐Test
- 5.2.1.3 Two‐Tailed vs. One‐Tailed t‐Tests
- 5.2.2 Rank‐Based Two‐Sample Tests
- 5.3 One‐Sample Tests
- 5.4 Power Analyses and Sample Size Determination
- Chapter 6 Communicating Quantitative Information Using Visuals
- 6.1 The Fundamentals of Scientific Plotting
- 6.2 Scatter Plots
- 6.3 Line Plots
- 6.4 Box Plots and Bar Plots
- 6.5 Multipanel Plots and Plotting Regions
- 6.6 Adding Text, Formulae, and Colour
- 6.7 Interaction Plots
- 6.8 Images, Colour Contour Plots, and 3D Plots
- 6.8.1 Adding Images to Plots
- 6.8.2 Colour Contour Plots
- References
- Chapter 7 Working with Categorical Data
- 7.1 Tabling and Visualising Categorical Data
- 7.2 Contingency Tables
- 7.3 The Chi‐squared Test
- 7.4 Decision Trees
- 7.5 Optimising Decision Trees
- References
- Chapter 8 Working with Continuous Data
- 8.1 Covariance
- 8.2 Correlation Coefficient
- 8.3 Transformations
- 8.4 Plotting Correlations
- 8.5 Correlation Tests
- References
- Chapter 9 Linear Regression
- 9.1 Basics and Simple Linear Regression
- 9.1.1 Making Sense of the summary Output for Regression Models Fitted with lm
- 9.1.2 Model Diagnostics
- 9.1.3 Model Predictions and Visualisation
- 9.1.4 What to Write in a Report or Paper?
- 9.1.4.1 Material and Methods
- 9.1.4.2 Results
- 9.1.5 Dealing with Variance Heterogeneity
- 9.2 Multiple Linear Regression
- 9.2.1 Multicollinearity in Multiple Regression Models
- 9.2.2 Testing Interactions Among Predictors
- 9.2.3 Model Selection and Comparison
- 9.2.4 Variable Importance
- 9.2.5 Visualising Multiple Linear Regression Results
- References.
- Chapter 10 One or More Categorical Predictors - Analysis of Variance
- 10.1 Comparing Groups
- 10.2 Comparing Groups Numerically
- 10.3 One‐way ANOVA Using R
- 10.4 Checking for the Model Assumptions
- 10.5 Post Hoc Comparisons
- 10.6 Two‐way ANOVA and Interactions
- 10.7 What If the Model Assumptions Are Violated?
- Reference
- Chapter 11 Analysis of Covariance (ANCOVA)
- 11.1 Interpreting ANCOVA Results
- 11.2 Post Hoc Test for ANCOVA
- References
- Chapter 12 Some of What Lies Ahead
- 12.1 Generalised Linear Models
- 12.2 Nonlinear Regression
- 12.2.1 Initial Parameter Estimates (Starting Values)
- 12.2.2 Nonlinear Model Fitting and Visualisation
- 12.3 Generalised Additive Models
- 12.4 Modern Approaches to Dealing with Heteroscedasticity
- 12.4.1 Variance Modelling Using Generalised Least‐squares Estimation
- 12.4.2 Robust, Heteroscedasticity‐Consistent Covariance Matrix Estimation
- References
- Index
- EULA.