Visualizing More Quaternions

Visualizing More Quaternions, Volume Two updates on proteomics-related material that will be useful for biochemists and biophysicists, including material related to electron microscopy (and specifically cryo-EVisualizing. Dr. Andrew J. Hanson’s groundbreaking book updates and extends concepts that h...

Descripción completa

Detalles Bibliográficos
Autor principal: Hanson, Andrew (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: San Diego : Elsevier Science & Technology 2024.
Edición:1st ed
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009837635206719
Tabla de Contenidos:
  • Front Cover
  • Visualizing More Quaternions
  • Copyright
  • Contents
  • Preface
  • Biography
  • 1 Review
  • 1 Introduction
  • 1.1 Introductory remarks
  • 1.2 Hamilton's walk
  • 1.3 Philosophical thoughts
  • 2 Basic quaternion formulas
  • 3 What are quaternions?
  • 3.1 Quaternions are extended complex numbers
  • 3.2 Quaternions are two-by-two matrices
  • 3.3 Quaternions are a complexified pair of complex numbers
  • 3.4 Quaternions are the group SU(2)
  • 3.5 Quaternion actions can be realized in complex projective space
  • 3.6 Quaternions are one of the four normed division algebras
  • 3.7 Quaternions are a special case of Clifford algebras
  • 3.8 Quaternions are points on the 3-sphere S3
  • 3.9 Synopsis
  • 4 What is quaternion visualization?
  • 4.1 Fundamental idea: the circle S1
  • 4.2 A richer example: the 2-sphere S2
  • 4.3 Seeing quaternions as points on the 3-sphere S3
  • 4.4 Interactively following a quaternion path of incremental rotations
  • 4.5 Displaying every point of the quaternion 3-sphere S3
  • 4.6 Examples of quaternion visualization strategies
  • 5 Interacting with quaternions as hyperspheres
  • 5.1 The 3D rolling ball
  • 5.2 The 4D rolling ball
  • 5.3 The ND rolling ball
  • 6 Quaternions and uniform rotation distributions
  • 6.1 Points on spheres
  • 6.2 Theoretical basis for uniformity of spherical distributions
  • 6.3 Elements of the uniform random sphere
  • 6.4 Attractive incorrect quaternion sampling
  • 6.5 More uniform quaternions: Gaussian and Shoemake/Diaconis
  • 2 Orientation matching
  • 7 Introduction: 2D cloud alignment problem
  • 7.1 Context of the alignment task
  • 7.2 Remark: some alignment problems are very simple
  • 8 The 3D quaternion-based alignment problem
  • 8.1 Introduction
  • 8.2 Spatial alignment of matched 3D point sets
  • 8.3 Reviewing the 3D spatial alignment RMSD problem.
  • 8.4 Algebraic solution of the eigensystem for 3D spatial alignment
  • 8.5 Conclusion
  • 9 Quaternion of a 3D rotation from the Bar-Itzhack method
  • 9.1 Classic methods for finding the quaternion of a 3D rotation
  • 9.2 The Bar-Itzhack approach
  • 9.3 Optimal quaternions from projection matrix data
  • 9.4 Summary of finding quaternions from rotation data
  • 10 The 3D quaternion-based frame alignment problem
  • 10.1 Introduction to quaternion orientation frames
  • 10.2 Overview of 3D quaternion frame alignment
  • 10.3 Alternative matrix forms of the linear vector chord distance
  • 10.4 Evaluating the 3D orientation frame solution
  • 11 The combined point-frame alignment problem
  • 11.1 Combined optimization measures
  • 11.2 Practical simplification of the composite measure
  • 3 Quaternion adjugate methods for pose estimation
  • 12 Exploring the quaternion adjugate variables
  • 12.1 Overview of the quaternion extraction problem
  • 12.2 Fundamental background
  • 12.3 2D rotations and the quaternion map
  • 12.3.1 Direct solution of the 2D problem
  • 12.3.2 Graphical illustration of the 2D rotation case
  • 12.3.3 Variational approach: the Bar-Itzhack method in 2D
  • 12.3.4 Bar-Itzhack errorful measurement strategy
  • 12.3.5 Summary
  • 12.4 3D rotations and the quaternion map
  • 12.4.1 Direct solution of the 3D problem
  • 12.4.2 Variational approach: Bar-Itzhack in 3D
  • 12.4.3 Bar-Itzhack variational approach to 3D noisy data
  • 13 Quaternion-related machine learning
  • 13.1 Overview
  • 13.2 Reports of quaternion deficiencies for machine learning
  • 13.3 Exercises in machine learning with quaternions
  • 13.3.1 Loss layer data encoding
  • 13.3.2 Network setup and training
  • 13.4 2D rotation training and results
  • 13.5 3D rotation training and results
  • 13.6 Basic elements of applying a network to the cloud matching problem.
  • 13.7 Experiments with training to the cross-covariance matrix E
  • 14 Exact 2D rotations for cloud matching and pose estimation tasks
  • 14.1 2D point-cloud orientation matching
  • 14.2 2D parallel projection pose estimation
  • 14.3 2D perspective projection
  • 15 Exact 3D rotations for cloud matching and pose estimation tasks
  • 15.1 Basics
  • 15.2 3D point-cloud matching
  • 15.3 Direct solution of the error-free 3D match problem
  • 15.3.1 Solving the 3D match least-squares loss function algebraically
  • 15.4 3D to 2D orthographic pose estimation
  • 15.4.1 Least-squares solution to error-free orthographic pose problem
  • 15.4.2 Remarks on variational approaches to solving matching problems
  • 15.5 3D pose estimation with perspective projection
  • 15.5.1 The exact perspective solution
  • 15.6 Remarks on handling data with measurement errors
  • 4 Quaternion proteomics
  • 16 Quaternion protein frame maps
  • 16.1 Quaternion maps of global protein structure
  • 16.2 Related work
  • 16.3 Introduction to quaternion maps
  • 16.3.1 Quaternion orientation frames
  • 16.4 Quaternion distance
  • 16.5 Protein frame geometry
  • 16.5.1 Visualizing quaternions as geometry
  • 16.5.2 Visualizing quaternions as coordinates
  • 16.5.3 Collections of frames via quaternion maps
  • 16.6 Studies in quaternion frame maps
  • 16.6.1 Alpha-helix model: quaternion frames of idealized curves
  • 16.6.2 Beta-sheet model: extreme quaternion frames
  • 16.6.3 Quaternion frames from spline curves of PDB backbones
  • 16.7 Quaternion frames from discrete PDB data
  • 16.8 Example applications of discrete global quaternion frames
  • 16.8.1 Quaternion frames of rigid proteins
  • 16.8.2 Statistical quaternion groupings of NMR data
  • 16.8.3 Enzyme functional structures
  • 16.9 Tools for exploring and comparing quaternion maps
  • 16.9.1 Aids for exploring quaternion maps.
  • 16.9.2 Metric for comparing quaternion maps
  • 16.9.3 Quaternion rings: orientation freedom spaces
  • 16.10 Conclusion
  • 5 Spherical geometry and quaternions
  • 17 Euclidean center of mass and barycentric coordinates
  • 17.1 The 1D simplex: N=1
  • 17.2 Triangular simplex: N=2
  • 17.3 Tetrahedral simplex barycenter: N=3
  • 17.4 The N-simplex barycenter
  • 17.5 Variational approach to the Euclidean center of mass
  • 18 Quaternion averaging and the barycenter
  • 18.1 Introduction
  • 18.2 The geometry of inter-quaternion distances
  • 18.3 Analysis of the quaternion averaging problem
  • 19 The quaternion barycentric coordinate problem
  • 19.1 Introduction
  • 19.2 Review of spherical trigonometry
  • 19.3 Spherical triangles as coordinates
  • 19.4 Brown-Worsey no-go theorem
  • 19.5 Möbius dual coordinates for points in a spherical simplex
  • 19.6 Quaternion barycentric coordinates
  • 19.7 Remark on intractability of spherical volume ratios for N&gt
  • 2
  • 6 Extending quaternions to 4D and SE(3)
  • 20 The 4D quaternion-based coordinate and orientation frame alignment problems
  • 20.1 Foundations of quaternions for 4D problems
  • 20.2 Double-quaternion approach to the 4D RMSD problem
  • 20.2.1 Starting point for the 4D RMSD problem
  • 20.2.2 A tentative 4D eigensystem
  • 20.2.3 Issues with the naive 4D approach
  • 20.2.4 Insights from the singular value decomposition
  • 20.3 4D orientation frame alignment
  • 20.3.1 The 4D orientation frame alignment problem
  • 20.4 Extracting quaternion pairs from 4D rotation matrices
  • 21 Dual quaternions and SE(3)
  • 21.1 Background
  • 21.2 Introduction to dual quaternions
  • 21.3 The fundamental idea of quaternion-like translations
  • 21.4 Refining the dual quaternion to use dual trigonometry
  • 21.5 The motion of a dual quaternion
  • 21.6 Brief discussion of applications
  • 7 Quaternion applications in physics.
  • 22 Quantum computing and quaternion qubits
  • 22.1 Context of quantum computing
  • 22.2 The qubit
  • 22.3 The Bloch sphere
  • 22.4 Quaternions as quantum computing operators
  • 22.5 Higher-dimensional qubit geometry
  • 22.6 Conclusion
  • 23 Introduction to quaternions and special relativity
  • 23.1 Rotations in 2D tell us a lot about 2D relativity
  • 23.2 Relativity with one time and two space dimensions
  • 23.3 Sequential noncommuting transformations
  • 23.4 Quaternion framework for 2 + 1 relativity
  • 23.5 Features of light in lower dimensions of spacetime
  • 23.6 Some simple 2 + 1 relativistic camera effects
  • 23.7 What is next?
  • 24 Complex quaternions and special relativity
  • 24.1 Introducing 3 space and 1 time
  • 24.2 Exploring complexified quaternions
  • 24.3 Relativity from SL(2,C) and complexified quaternions
  • 24.4 Four-vector Pauli matrices and the spacetime Lorentz group
  • 24.5 Miscellaneous properties
  • 24.6 Summary of (3 + 1)-dimensional relativity and complexified quaternions
  • 8 Quaternion discrete symmetries and gravitons
  • 25 Geometry of the ADE symmetries of the 2-sphere
  • 25.1 Introduction to discrete groups on the sphere
  • 25.2 Coordinates of the Ak cyclic geometry
  • 25.3 Coordinates of the Dk dihedral geometry
  • 25.4 Coordinates of the E6 tetrahedral geometry
  • 25.5 Coordinates of the E7 octahedral geometry
  • 25.6 Coordinates of the E8 icosahedral geometry
  • 26 The discrete ADE rotation groups and their quaternions
  • 26.1 Introduction
  • 26.2 Actions of the SO(3) ADE rotations in Euclidean 3D space
  • 26.3 Identifying the 3D symmetric ADE transformations
  • 26.4 The quaternion actions of the Klein groups
  • 26.4.1 The Ak cyclic quaternion group
  • 26.4.2 The Dk dihedral quaternion group
  • 26.4.3 The E6 tetrahedral quaternion group
  • 26.4.4 The E7 octahedral quaternion group.
  • 26.4.5 The E8 icosahedral quaternion group.