Cellular internet of things from massive deployments to critical 5G applications

"Cellular Internet of Things: From Massive Deployments to Critical 5G Applications, Second Edition, gives insights into the recent and rapid work performed by the 3rd Generation Partnership Project (3GPP) and the Multefire Alliance (MFA) to develop systems for the Cellular IoT. Beyond the techn...

Descripción completa

Detalles Bibliográficos
Otros Autores: Liberg, Olof, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: London, England : Academic Press [2020]
Edición:Second edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009835433006719
Tabla de Contenidos:
  • Front Cover
  • Cellular Internet of Things
  • Cellular Internet of Things
  • Copyright
  • Contents
  • Biography
  • Preface
  • Acknowledgments
  • 1 - The Internet of Things
  • 1.1 Introduction
  • 1.2 IoT communication technologies
  • 1.2.1 Cellular IoT
  • 1.2.2 Technologies for unlicensed spectrum
  • 1.3 Outline of the book
  • References
  • 2 - Global cellular IoT standards
  • 2.1 3GPP
  • 2.2 Cellular system architecture
  • 2.2.1 Network architecture
  • 2.2.2 Radio protocol architecture
  • 2.3 From machine-type communications to the cellular internet of things
  • 2.3.1 Access class and overload control
  • 2.3.2 Small data transmission
  • 2.3.3 Device power savings
  • 2.3.4 Study on provision of low-cost MTC devices based on LTE
  • 2.3.5 Study on cellular system support for ultra-low complexity and low throughput internet of things
  • 2.3.6 Study on Latency reduction techniques for LTE
  • 2.4 5G
  • 2.4.1 IMT-2020
  • 2.4.2 3GPP 5G
  • 2.4.2.1 5G feasibility studies
  • 2.4.2.2 5G network architecture
  • 2.4.2.3 5G radio protocol architecture
  • 2.4.2.4 NR physical layer
  • 2.4.2.4.1 Modulation
  • 2.4.2.4.2 Numerology
  • 2.4.2.4.3 Time and frequency resources
  • 2.4.2.4.4 Initial access and beam management
  • 2.4.2.4.5 Control and data channels
  • 2.4.2.5 NR and LTE coexistence
  • 2.5 MFA
  • References
  • 3 - EC-GSM-IoT
  • 3.1 Background
  • 3.1.1 The history of GSM
  • 3.1.2 Characteristics suitable for IoT
  • 3.1.2.1 Global deployment
  • 3.1.2.2 Number of frequency bands
  • 3.1.2.3 Small spectrum deployment
  • 3.1.2.4 Module price
  • 3.1.3 Enhancements undertaken by 3GPP
  • 3.2 Physical layer
  • 3.2.1 Guiding principles
  • 3.2.2 Physical resources
  • 3.2.2.1 Channel raster
  • 3.2.2.2 Frame structure
  • 3.2.2.3 Burst types
  • 3.2.3 Transmission schemes
  • 3.2.3.1 Modulation
  • 3.2.3.2 Blind transmissions
  • 3.2.3.3 Coverage Classes.
  • 3.2.4 Channel coding and interleaving
  • 3.2.5 Mapping of logical channels onto physical channels
  • 3.2.6 Downlink logical channels
  • 3.2.6.1 FCCH
  • 3.2.6.2 EC-SCH
  • 3.2.6.3 EC-BCCH
  • 3.2.6.4 EC-CCCH/D (EC-AGCH, EC-PCH)
  • 3.2.6.5 EC-PDTCH/D
  • 3.2.6.6 EC-PACCH/D
  • 3.2.7 Uplink logical channels
  • 3.2.7.1 EC-CCCH/U (EC-RACH)
  • 3.2.7.2 EC-PDTCH/U
  • 3.2.7.3 EC-PACCH/U
  • 3.2.8 Extending coverage
  • 3.2.8.1 Defining maximum coupling loss
  • 3.2.8.2 Maximizing the receiver processing gain
  • 3.2.8.3 Improved channel coding
  • 3.2.8.4 More efficient HARQ
  • 3.2.8.5 Increased acquisition time
  • 3.2.8.6 Increasing system capacity
  • 3.3 Idle and connected mode procedures
  • 3.3.1 Idle mode procedures
  • 3.3.1.1 Cell selection
  • 3.3.1.2 Cell reselection
  • 3.3.1.3 Extended coverage system information (EC SI)
  • 3.3.1.4 Coverage Class selection
  • 3.3.1.5 Paging
  • 3.3.1.6 PSM
  • 3.3.1.7 System access procedure
  • 3.3.1.7.1 EC packet channel request
  • 3.3.1.7.2 Coverage Class adaptation
  • 3.3.1.7.3 Contention resolution
  • 3.3.1.7.4 Access Control
  • 3.3.2 Connected mode procedures
  • 3.3.2.1 Assignment and allocation of resources
  • 3.3.2.1.1 Downlink
  • 3.3.2.1.2 Uplink
  • 3.3.2.2 Hybrid ARQ
  • 3.3.2.2.1 EGPRS
  • 3.3.2.2.2 EC-GSM-IoT
  • 3.3.2.2.2.1 Downlink
  • 3.3.2.2.2.2 Uplink
  • 3.3.2.3 Link adaptation
  • 3.3.2.4 Power control
  • 3.3.3 Backward compatibility
  • 3.3.4 Improved security
  • 3.3.5 Device and network capabilities
  • 3.4 Other features
  • 3.4.1 Improved positioning of devices
  • 3.4.2 Improved coverage for 23dBm devices
  • 3.4.3 New TS mapping in extended coverage
  • References
  • 4 - EC-GSM-IoT performance
  • 4.1 Performance objectives
  • 4.2 Coverage
  • 4.2.1 Evaluation assumptions
  • 4.2.1.1 Requirements on logical channels
  • 4.2.1.1.1 Synchronization channels
  • 4.2.1.1.2 Control and broadcast channels.
  • 4.2.1.1.3 Traffic channels
  • 4.2.1.2 Radio-related parameters
  • 4.2.1.3 Coverage performance
  • 4.3 Data rate
  • 4.4 Latency
  • 4.4.1 Evaluation assumptions
  • 4.4.2 Latency performance
  • 4.5 Battery life
  • 4.5.1 Evaluation assumptions
  • 4.5.2 Battery life performance
  • 4.6 Capacity
  • 4.6.1 Evaluation assumptions
  • 4.6.1.1 Autonomous reporting and network command
  • 4.6.1.2 Software download
  • 4.6.2 Capacity performance
  • 4.7 Device complexity
  • 4.7.1 Peripherals and real time clock
  • 4.7.2 CPU
  • 4.7.3 DSP and transceiver
  • 4.7.4 Overall impact on device complexity
  • 4.8 Operation in a narrow frequency deployment
  • 4.8.1 Idle mode procedures
  • 4.8.1.1 PLMN and cell selection
  • 4.8.1.2 Cell reselection
  • 4.8.2 Data and control channel performance
  • 4.9 Positioning
  • References
  • 5 - LTE-M
  • 5.1 Background
  • 5.1.1 3GPP standardization
  • 5.1.2.2 Coverage enhancement
  • 5.1.2.3 Long device battery lifetime
  • 5.1.2.4 Support of massive number of devices
  • 5.1.2.5 Deployment flexibility
  • 5.1.2.6 Coexistence with LTE
  • 5.2 Physical layer
  • 5.2.1 Physical resources
  • 5.2.1.1 Channel raster
  • 5.2.1.2 Frame structure
  • 5.2.1.3 Resource grid
  • 5.2.2 Transmission schemes
  • 5.2.2.1 Duplex modes
  • 5.2.2.2 Narrowband and wideband operation
  • 5.2.2.3 Coverage enhancement modes
  • 5.2.3 Device categories and capabilities
  • 5.2.4 Downlink physical channels and signals
  • 5.2.4.1 Downlink subframes
  • 5.2.4.2 Synchronization signals
  • 5.2.4.2.1 PSS and SSS
  • 5.2.4.2.2 RSS
  • 5.2.4.3 Downlink reference signals
  • 5.2.4.3.1 CRS
  • 5.2.4.3.2 DMRS
  • 5.2.4.3.3 PRS
  • 5.2.4.4 PBCH
  • 5.2.4.5 MWUS
  • 5.2.4.6 MPDCCH
  • 5.2.4.7 PDSCH
  • 5.2.5 Uplink physical channels and signals
  • 5.2.5.1 Uplink subframes
  • 5.2.5.2 PRACH
  • 5.2.5.3 Uplink reference signals
  • 5.2.5.3.1 DMRS
  • 5.2.5.3.2 SRS
  • 5.2.5.4 PUSCH
  • 5.2.5.5 PUCCH.
  • 5.3 Idle and connected mode procedures
  • 5.3.1 Idle mode procedures
  • 5.3.1.1 Cell selection
  • 5.3.1.1.1 Time and frequency synchronization
  • 5.3.1.1.2 Cell identification and initial frame synchronization
  • 5.3.1.1.3 MIB acquisition
  • 5.3.1.1.4 CID and H-SFN acquisition
  • 5.3.1.2 System Information acquisition
  • 5.3.1.2.1 System Information Block 1
  • 5.3.1.2.2 System Information Blocks 2-20
  • 5.3.1.2.3 System Information update
  • 5.3.1.3 Cell reselection
  • 5.3.1.4 Paging, DRX and eDRX
  • 5.3.1.5 Power Saving Mode
  • 5.3.1.6 Random access in idle mode
  • 5.3.1.7 Connection establishment
  • 5.3.1.7.1 RRC resume
  • 5.3.1.7.2 Data over Non-access Stratum
  • 5.3.1.7.3 Early Data Transmission
  • 5.3.1.8 Access control
  • 5.3.1.9 Multicast
  • 5.3.2 Connected mode procedures
  • 5.3.2.1 Scheduling
  • 5.3.2.1.1 Dynamic downlink scheduling
  • 5.3.2.1.2 Dynamic uplink scheduling
  • 5.3.2.1.3 Semipersistent scheduling
  • 5.3.2.2 Channel quality reporting
  • 5.3.2.3 Random access in connected mode
  • 5.3.2.4 Power control
  • 5.3.2.5 Mobility support
  • 5.3.2.6 Positioning
  • 5.3.3 Procedures common for idle and connected mode
  • 5.3.3.1 MPDCCH search spaces
  • 5.3.3.2 Frequency hopping
  • 5.4 NR and LTE-M coexistence
  • References
  • 6 - LTE-M performance
  • 6.1 Performance objectives
  • 6.2 Coverage
  • 6.3 Data rate
  • 6.3.1 Downlink data rate
  • 6.3.2 Uplink data rate
  • 6.4 Latency
  • 6.5 Battery life
  • 6.6 Capacity
  • 6.7 Device complexity
  • References
  • 7 - NB-IoT
  • 7.1 Background
  • 7.1.1 3GPP standardization
  • 7.1.2 Radio access design principles
  • 7.1.2.1 Low device complexity and cost
  • 7.1.2.2 Coverage enhancement
  • 7.1.2.3 Long device battery lifetime
  • 7.1.2.4 Support of massive number of devices
  • 7.1.2.5 Deployment flexibility
  • 7.1.2.5.1 Stand-alone mode of operation
  • 7.1.2.5.2 In-band and guard-band modes of operation.
  • 7.1.2.5.3 Spectrum refarming
  • 7.1.2.6 Coexistence with LTE
  • 7.2 Physical layer
  • 7.2.1 Physical resources
  • 7.2.1.1 Channel raster
  • 7.2.1.2 Frame structure
  • 7.2.1.3 Resource grid
  • 7.2.2 Transmission schemes
  • 7.2.2.1 Duplex modes
  • 7.2.2.2 Downlink operation
  • 7.2.2.3 Uplink operation
  • 7.2.3 Device categories and capabilities
  • 7.2.4 Downlink physical channels and signals
  • 7.2.4.1 NB-IoT subframes
  • 7.2.4.2 Synchronization signals
  • 7.2.4.2.1 NPSS
  • 7.2.4.2.2 NSSS
  • 7.2.4.3 NRS
  • 7.2.4.4 NPBCH
  • 7.2.4.5 NPDCCH
  • 7.2.4.6 NPDSCH
  • 7.2.4.7 NPRS
  • 7.2.4.8 NWUS
  • 7.2.5 Uplink physical channels and signals
  • 7.2.5.1 NPRACH
  • 7.2.5.2 NPUSCH
  • 7.2.5.3 DMRS
  • 7.2.5.4 NPRACH and NPUSCH multiplexing
  • 7.2.6 Baseband signal generation
  • 7.2.6.1 Uplink
  • 7.2.6.1.1 Multitone NPUSCH
  • 7.2.6.1.2 Single-tone NPUSCH
  • 7.2.6.1.3 NPRACH
  • 7.2.6.2 Downlink
  • 7.2.7 Transmission gap
  • 7.2.7.1 Downlink transmission gap
  • 7.2.7.2 Uplink transmission gap
  • 7.2.8 TDD
  • 7.2.8.1 Subframe mapping
  • 7.2.8.2 Usage of special subframes
  • 7.2.8.3 NPRACH for TDD
  • 7.2.8.4 NPUSCH for TDD
  • 7.2.8.5 Device assumption on subframes containing NRS
  • 7.2.8.6 System information transmissions
  • 7.2.8.7 Uplink transmission gaps
  • 7.3 Idle and connected mode procedures
  • 7.3.1 Idle mode procedures
  • 7.3.1.1 Cell selection
  • 7.3.1.1.1 Time and frequency synchronization
  • 7.3.1.1.2 Physical cell identification and initial frame synchronization
  • 7.3.1.1.3 MIB acquisition
  • 7.3.1.1.4 Cell identity and H-SFN acquisition
  • 7.3.1.2 SI acquisition
  • 7.3.1.2.1 System Information Block Type 1
  • 7.3.1.2.2 Information specific to in-band mode of operation
  • 7.3.1.2.3 SI blocks 2, 3, 4, 5, 14, 15, 16, 20, 22, 23
  • 7.3.1.2.4 SI update
  • 7.3.1.3 Cell reselection
  • 7.3.1.4 Paging, DRX and eDRX
  • 7.3.1.5 PSM
  • 7.3.1.6 Random access in idle mode.
  • 7.3.1.7 Connection establishment.