Technologies for solar thermal energy theory, design and optimization

Technologies for Solar Thermal Energy: Theory, Design and Optimization presents concepts surrounding industrial process heat and thermal power generation, including detailed theory and practical considerations for design, performance analysis, and economic assessments. Addressing the significance of...

Full description

Bibliographic Details
Other Authors: Hasanuzzaman, Md. (Energy and sustainable development expert) editor (editor)
Format: eBook
Language:Inglés
Published: London, England ; San Diego, California : Elsevier [2022]
Subjects:
See on Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009835431506719
Table of Contents:
  • Front Cover
  • Technologies for Solar Thermal Energy
  • Technologies for Solar Thermal Energy: Theory, Design, and Optimization
  • Copyright
  • Contents
  • List of contributors
  • 1 - Fundamentals of thermal energy and solar system integration
  • 1.1 Introduction
  • 1.2 Foundation of thermodynamics
  • 1.2.1 Basics of thermodynamics
  • System and control volume
  • Properties of a system
  • Temperature
  • Pressure
  • 1.2.2 Basic energy conversion
  • Fossil fuel energy conversion
  • Renewable energy conversion
  • 1.3 Thermal energy demand and supply
  • 1.3.1 Sector wise thermal energy demand
  • 1.4 Conventional thermal energy supply technologies
  • 1.4.1 Boiler
  • Classification of steam boiler
  • Fire-tube boiler
  • Water-tube boiler
  • Modern boiler
  • Heat recovery steam generators
  • Recovery boilers
  • Boiler mountings and accessories
  • Superheaters and reheaters
  • Economizers
  • Air preheater
  • 1.4.2 Combined heat and power
  • Gas turbine CHP plants
  • Solar energy conversion and integrated CHP plants
  • CHP plants for district heating
  • Selection factor for cogeneration systems
  • The potential of CHP in industrial sectors
  • 1.5 Solar thermal integration
  • 1.5.1 Integration of supply level
  • 1.5.2 Integration on process level
  • References
  • 2 - Solar thermal energy conversion
  • 2.1 Introduction
  • 2.2 The geometry of solar radiation
  • 2.2.1 Latitude
  • 2.2.2 Declination angle
  • 2.2.3 Solar noon
  • 2.2.4 Hour angle
  • 2.2.5 Elevation/altitude angle
  • 2.2.6 Zenith angle (θz)
  • 2.2.7 Sunset hour angle (ωs) and daylight hours
  • 2.2.8 Solar azimuth angle (γS)
  • 2.2.9 Tilt angle or inclination angle (β)
  • 2.2.10 Surface azimuth angle (γ)
  • 2.2.11 Angle of incidence (θ)
  • 2.2.12 Geometric factor (Rb)
  • 2.3 Components and types of solar radiation
  • 2.3.1 Irradiance
  • 2.3.2 Irradiation or insolation.
  • 2.4 Calculation of extraterrestrial radiation
  • 2.5 Calculation of terrestrial radiation
  • 2.5.1 Measurement of terrestrial radiation
  • 2.5.2 Terrestrial radiations databases
  • 2.5.3 Terrestrial irradiation estimation from correlation
  • 2.6 Calculation of beam and diffuse radiation on horizontal plane
  • 2.6.1 The monthly average daily clearness index
  • 2.6.2 The hourly clearness index
  • 2.6.3 The daily clearness index
  • Hourly total irradiation from daily irradiation on horizontal
  • Hourly diffuse irradiations from daily diffuse irradiation on horizontal
  • 2.7 Radiations on a tilted plane
  • 2.7.1 Calculation of radiations on a tilted plane
  • 2.7.2 Models for calculation of radiations on a tilted plane
  • Liu and Jordan model (iso, γ=0, I) (Liu &amp
  • Jordan, 1960)
  • Liu and Jordan model (iso, γ=0, H) (Liu &amp
  • Jordan, 1960)
  • Hay, Davies, Klucher and Reindl model (HDKR model) (iso+cs+hz, γ=0, I) (Yadav &amp
  • Chandel, 2013)
  • 2.8 Solar power conversion
  • 2.8.1 PV systems
  • 2.8.2 Solar thermal power production
  • 2.8.3 Installations of PV modules or thermal collectors
  • 2.8.4 Fixed type PV installations with an optimum tilt angle
  • 2.9 Solar tracking technology
  • 2.9.1 Classification of solar tracking
  • 2.9.2 Closed loop tracking system
  • 2.9.3 Open loop tracking system
  • 2.9.4 Passive solar trackers
  • 2.9.5 Single axis tracking
  • 2.9.6 Double axis tracking
  • 2.10 Worked out problems
  • References
  • 3 - Heat exchanger for solar thermal energy
  • 3.1 Basic concept of heat exchanger
  • 3.1.1 Concept and definition
  • 3.1.2 Classification of heat exchangers
  • Classification based on transfer processes
  • Classification based on physical construction
  • Classification based on flow arrangement
  • Compact heat exchanger
  • Heat exchangers coupled with solar thermal technology.
  • 3.1.3 Common heat exchanger technologies for solar thermal energy
  • Salt-steam heat exchanger system
  • Integrated photovoltaic thermal solar system with earth water heat exchanger
  • Multitank modular heat storage for solar thermal systems
  • Earth air heat exchanger
  • Single slope solar still integrated with helically coiled heat exchanger
  • Vertical straight and helical coiled pipe heat exchanger
  • Solar pond heat exchanger
  • Shell and tube heat exchangers
  • Submerged heat exchanger used for solar absorption
  • Fluidized bed heat exchanger
  • 3.2 Design of heat exchanger
  • 3.2.1 Mathematical modeling of earth water heat exchanger coupled with IPVTS (Jakhar et al., 2017)
  • 3.2.2 Mathematical modeling of Earth Air Heat Exchanger system (Afrand et al., 2019)
  • 3.2.3 Mathematical modeling of vertical straight and helical coiled pipe heat exchanger (Vaivudh et al., 2008)
  • Vertical straight pipe equations
  • Helical coiled pipe equations
  • 3.2.4 Mathematical modeling of tube bundle of a shell and tube heat exchanger (Zaversky et al., 2014)
  • 3.2.5 Hydrodynamics of fluidized bed heat exchanger (Farsi &amp
  • Dincer, 2019)
  • 3.2.6 Heat recovery heat exchanger in hybrid particle-based concentrated solar power plant (Farsi &amp
  • Dincer, 2019)
  • 3.3 Heat exchanger performance analysis
  • 3.3.1 Performance analysis of IPVTS system with EWHE
  • 3.3.2 Performance analysis of BIPVT integrated with earth air heat exchanger
  • 3.3.3 Performance analysis of vertical straight and helical coiled pipe HE
  • 3.3.4 Performance analysis of submerged heat exchanger for solar absorption
  • 3.3.5 Performance analysis of fluidized bed heat exchanger
  • 3.4 Problems and solutions on HEs
  • References
  • 4 - Solar thermal collector
  • 4.1 Basic concept of solar thermal collectors
  • 4.2 Categorization of solar thermal collectors.
  • 4.3 Nonconcentrator collectors
  • 4.3.1 Flat plate collector
  • Applications
  • 4.3.2 Evacuated tube collectors
  • Application
  • 4.4 Concentrator collectors
  • 4.4.1 Compound parabolic and Fresnel lens collectors
  • Application
  • 4.4.2 Parabolic trough collector
  • Parameter calculation
  • More equations for the model
  • Application
  • 4.4.3 Parabolic dish reflector
  • Application
  • 4.4.4 Central receiver or heliostat field reflector
  • Applications
  • References
  • 5 - Solar photovoltaic thermal systems
  • 5.1 Introduction
  • 5.2 Photovoltaic thermal technology
  • 5.3 Solar cell or PV cell
  • 5.3.1 Crystalline solar cell
  • 5.3.2 Thin-film solar cell
  • 5.3.3 Amorphous solar cell
  • 5.3.4 Organic and polymer solar cell
  • 5.3.5 Dye-sensitized solar cell
  • 5.3.6 Hybrid solar cell
  • 5.3.7 PV cell electrical parameters
  • p-n junction
  • Short-circuit current (Isc)
  • Open-circuit voltage (Voc)
  • Fill factor
  • Solar cell efficiency
  • Detailed balance
  • Boundary conditions
  • 5.3.8 Performance of PV cell
  • Effect of temperature
  • Solar to electricity system
  • Solar to fuel system
  • Solar electricity to fuel system
  • 5.4 Energy conversion in different types of PVT systems
  • 5.4.1 Energy conversion in PVT/water system
  • Evaluation criterion of the PV/T system
  • 5.4.2 Energy conversion in glazed PVT/water system
  • 5.4.3 Energy conversion in unglazed PVT/water and PVT-PCM systems
  • 5.4.4 Energy conversion in PVT/air system
  • References
  • Further reading
  • 6 - Solar thermal power plant
  • 6.1 Introduction
  • 6.2 Basic concept of solar thermal power plant
  • 6.3 Solar thermal power generation technologies
  • 6.3.1 Solar tower power plant
  • 6.3.2 Parabolic through solar power plant
  • 6.3.3 Parabolic dish solar power plant
  • 6.3.4 Linear Fresnel reflector solar power plant
  • 6.3.5 Solar chimney power plant.
  • 6.4 Solar position modeling
  • 6.4.1 Solar angle
  • 6.4.2 Solar tracking angle
  • 6.4.3 Direct normal beam insolation
  • 6.5 Design of a parabolic through solar thermal power plant
  • 6.5.1 Parabolic through collector design
  • Geometric configuration
  • Solar energy absorption modeling
  • Solar receiver design
  • Transfer of heat from the absorber to the heat transfer fluid
  • Conduction heat transfer through absorber wall
  • Transfer of heat from the absorber to the glass envelope
  • Vacuum in annulus (p&lt
  • 1 Torr)
  • Annulus pressure higher than 1 Torr
  • Radiation heat transfer from the absorber to the envelope
  • Conductive heat transport through the glass envelope
  • Heat transfer from HCE support bracket
  • Heat loss from the glass envelope to the atmosphere
  • Pressure drops from the piping system
  • HTF pump
  • 6.6 Design of a solar tower power plant
  • 6.6.1 Heliostat field modeling
  • 6.6.2 Central receiver modeling
  • 6.7 Heat transfer fluid
  • 6.7.1 Available heat transfer fluid
  • 6.7.2 Correlations for thermophysical property of HTFs
  • 6.8 Site selection and mapping
  • 6.8.1 Method related to sites selection of solar power plants
  • 6.8.2 Evaluation criteria
  • 6.8.3 AHP and ANP ranking approach
  • 6.8.4 Site selection principle
  • 6.8.5 Land selection and site elevation
  • 6.9 Design of thermal collector for power plant
  • 6.9.1 Flat plate solar collectors
  • Convection loss
  • Conduction loss
  • Radiation loss
  • 6.9.2 Evacuated tube collectors
  • 6.10 Solar aided power generation
  • 6.11 Hybridization of power cycle with solar thermal energy resources
  • 6.11.1 Hybridizing with Rankine cycle
  • 6.12 Performance analysis
  • 6.12.1 Overall efficiency
  • 6.12.2 Fuel-based efficiency
  • 6.12.3 Solar-to-electric efficiency
  • 6.12.4 Solar heat fraction
  • 6.12.5 Fuel saving fraction
  • References
  • 7 - Solar thermal energy storage.
  • 7.1 Introduction.