5G physical layer principles, models and technology components

5G Physical Layer: Principles, Models and Technology Components explains fundamental physical layer design principles, models and components for the 5G new radio access technology - 5G New Radio (NR). The physical layer models include radio wave propagation and hardware impairments for the full rang...

Descripción completa

Detalles Bibliográficos
Otros Autores: Zaidi, Ali, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: London, United Kingdom : Academic Press, an imprint of Elsevier [2018]
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009835428406719
Tabla de Contenidos:
  • Front Cover
  • 5G Physical Layer
  • Copyright
  • Contents
  • Acknowledgments
  • List of Acronyms
  • 1 Introduction: 5G Radio Access
  • 1.1 Evolution of Mobile Communication
  • 1.2 5G New Radio Access Technology
  • 1.3 5G NR Global View
  • 1.3.1 5G Standardization
  • 1.3.2 Spectrum for 5G
  • 1.3.3 Use Cases for 5G
  • eMBB:
  • URLLC:
  • mMTC:
  • 1.3.4 5G Field Trials
  • 1.3.5 5G Commercial Deployments
  • 1.4 Preview of the Book
  • References
  • 2 NR Physical Layer: Overview
  • 2.1 Radio Protocol Architecture
  • 2.2 NR PHY: Key Technology Components
  • 2.2.1 Modulation
  • 2.2.2 Waveform
  • 2.2.3 Multiple Antennas
  • 2.2.4 Channel Coding
  • 2.3 Physical Time-Frequency Resources
  • 2.4 Physical Channels
  • 2.5 Physical Signals
  • 2.6 Duplexing Scheme
  • 2.7 Frame Structure
  • 2.8 PHY Procedures and Measurements
  • 2.9 Physical Layer Challenges
  • 2.9.1 Propagation Related Challenges
  • 2.9.2 Hardware Related Challenges
  • References
  • 3 Propagation &amp
  • Channel Modeling
  • 3.1 Propagation Fundamentals
  • 3.1.1 Electromagnetic Waves
  • 3.1.2 Free-Space Propagation
  • 3.1.3 Scattering and Absorption
  • 3.2 Propagation Channel Characterization
  • 3.2.1 Frequency-Delay Domain
  • 3.2.2 Doppler-Time Domain
  • 3.2.3 Directional Domain
  • 3.3 Experimental Channel Characteristics
  • 3.3.1 Measurement Techniques
  • 3.3.1.1 Continuous Wave
  • 3.3.1.2 Vector Network Analyzer
  • 3.3.1.3 Correlation-Based Channel Sounding
  • 3.3.1.4 Directional Characteristics
  • 3.3.2 Analysis Methods
  • 3.3.2.1 Spectral Analysis
  • 3.3.2.2 Superresolution Methods
  • 3.3.2.3 Measurement Comparability
  • 3.3.3 Transmission Loss Measurements
  • 3.3.3.1 Indoor Of ce Scenario
  • 3.3.3.2 Outdoor-to-Indoor Scenario
  • 3.3.3.3 Outdoor Street Scenario
  • 3.3.3.4 Outdoor Urban Over Rooftop Scenario
  • 3.3.4 Delay Domain Measurements
  • 3.3.4.1 Indoor Of ce
  • 3.3.4.2 Outdoor-to-Indoor.
  • 3.3.4.3 Outdoor Street Canyon Scenario
  • 3.3.4.4 General Frequency Trend in Delay Domain
  • 3.3.5 Directional Domain Measurements
  • 3.3.5.1 Indoor Of ce Wideband Results at 60 GHz
  • 3.3.5.2 Indoor Of ce Multifrequency Results
  • 3.3.5.3 Urban Macrocell Outdoor Results at 5 GHz
  • 3.4 Channel Modeling
  • 3.4.1 5G Stochastic Channel Models
  • 3.4.1.1 Transmission Loss Modeling
  • 3.4.1.2 Multipath Directional and Delay Modeling
  • 3.4.1.3 Spatial Consistency
  • 3.4.2 Geometry-Based Modeling
  • 3.4.2.1 Blockage
  • 3.5 Summary and Future Work
  • References
  • 4 Mathematical Modeling of Hardware Impairments
  • 4.1 RF Power Ampli ers
  • 4.1.1 The Volterra Series
  • 4.1.2 Common Subsets of the Volterra Series
  • 4.1.2.1 Static Polynomial
  • Third-Order Static Polynomial
  • 4.1.2.2 A Note on Odd-Even and Odd Orders
  • 4.1.2.3 Memory Polynomial
  • 4.1.2.4 Generalized Memory Polynomial
  • 4.1.3 Global vs. Local Basis Functions
  • 4.1.4 Experimental Model Validation
  • 4.1.4.1 Quantifying Modeling Performance
  • 4.1.5 Mutually Orthogonal Basis Functions
  • 4.1.6 Multi-Antenna Environments and Mutual Coupling
  • 4.2 Oscillator Phase Noise
  • 4.2.1 Phase-Noise Power Spectrum and Leeson's Equation
  • 4.2.2 Phase-Noise Modeling: Free-Running Oscillator
  • 4.2.3 Phase-Noise Modeling: Phase-Locked Loop
  • 4.3 Data Converters
  • 4.3.1 Modeling of Quantization Noise
  • 4.4 Statistical Modeling
  • 4.4.1 The Bussgang Theorem and the System Model
  • 4.5 Stochastic Modeling of Power Ampli ers
  • 4.6 Oscillator Phase Noise
  • 4.7 Stochastic Modeling of Data Converters
  • 4.8 Model Concatenation and Simulations
  • 4.8.1 Signal-to-Interference and Noise Ratio
  • 4.8.2 Simulations
  • 4.8.3 Simulation Results
  • References
  • 5 Multicarrier Waveforms
  • 5.1 Multicarrier Waveforms
  • 5.1.1 The Principle of Orthogonality
  • 5.1.2 OFDM-Based Waveforms.
  • 5.1.2.1 Cyclic Pre x OFDM
  • 5.1.2.2 Windowed OFDM
  • 5.1.2.3 Filtered OFDM
  • 5.1.2.4 Universally Filtered OFDM
  • 5.1.3 Filter Bank-Based Waveforms
  • 5.1.3.1 FBMC-OQAM
  • 5.1.3.2 FBMC-QAM
  • 5.2 Single Carrier DFTS-OFDM
  • 5.3 Waveform Design Requirements for 5G NR
  • 5.4 Key Performance Indicator for NR Waveform Design
  • 5.5 Waveform Comparison for NR
  • 5.5.1 Frequency Localization
  • 5.5.2 Power Ef ciency
  • 5.5.3 Time-Varying Fading Channel
  • 5.5.4 Baseband Complexity
  • 5.5.4.1 CP-OFDM
  • 5.5.4.2 W-OFDM
  • 5.5.4.3 UF-OFDM
  • 5.5.4.4 FBMC-OQAM
  • 5.5.5 Phase-Noise Robustness Comparison
  • 5.5.5.1 Phase-Noise Effect in OFDM
  • 5.5.5.2 Phase-Noise Effect in FBMC-QAM
  • 5.5.5.3 Phase-Noise Effect in FBMC-OQAM
  • References
  • 6 NR Waveform
  • 6.1 Suitability of OFDM for NR
  • 6.2 Scalable OFDM for NR
  • 6.2.1 Why 15 kHz as Baseline Numerology?
  • 6.2.2 Why 15x2n kHz Scaling?
  • 6.3 OFDM Numerology Implementation
  • 6.3.1 Phase Noise
  • 6.3.2 Cell Size, Service Latency, and Mobility
  • 6.3.3 Multiplexing Services
  • 6.3.4 Spectral Con nement
  • 6.3.5 Guard Band Considerations
  • 6.3.6 Implementation Aspects
  • 6.4 Improving Power Ef ciency of NR Waveform
  • 6.4.1 Techniques With Distortion
  • 6.4.2 Distortion-less Techniques
  • 6.5 Effects of Synchronization Errors
  • 6.5.1 Effect of Timing Offset
  • 6.5.2 Effect of Carrier Frequency Offset
  • 6.5.3 Sampling Frequency Offset
  • 6.6 Impairment Mitigation
  • 6.6.1 A Phase-Noise Mitigation Scheme
  • 6.6.2 CFO and SFO Mitigation
  • References
  • 7 Multiantenna Techniques
  • 7.1 The Role of Multiantenna Techniques in NR
  • 7.1.1 Low Frequencies
  • 7.1.2 High Frequencies
  • 7.2 Multiantenna Fundamentals
  • 7.2.1 Beam-Forming, Precoding, and Diversity
  • 7.2.2 Spatial Multiplexing
  • 7.2.2.1 SU-MIMO Precoding
  • 7.2.2.2 MU-MIMO Precoding
  • 7.2.2.3 MIMO Receivers
  • 7.2.3 Antenna Array Architectures.
  • 7.2.3.1 Digital Arrays
  • 7.2.3.2 Analog Arrays
  • 7.2.3.3 Hybrid Arrays
  • 7.2.3.4 A Millimeter-Wave Antenna Array System Prototype
  • 7.2.4 UE Antennas
  • 7.2.5 Antenna Ports and QCL
  • 7.2.6 CSI Acquisition
  • 7.2.6.1 Reciprocity Based
  • 7.2.6.2 Feedback Based
  • 7.2.7 Massive MIMO
  • 7.3 Multiantenna Techniques in NR
  • 7.3.1 CSI Acquisition
  • 7.3.1.1 Interference Measurements
  • 7.3.2 Downlink MIMO Transmission
  • 7.3.3 Uplink MIMO Transmission
  • 7.3.4 Beam Management
  • 7.3.4.1 Beam Acquisition During Initial Access
  • 7.3.4.2 Beam Management Procedures
  • 7.3.4.3 Beam Measurement and Reporting
  • 7.3.4.4 Beam Indication
  • 7.3.4.5 Beam Recovery
  • 7.3.4.6 Uplink Beam Management
  • 7.4 Experimental Results
  • 7.4.1 Beam-Forming Gain
  • 7.4.2 Beam Tracking
  • 7.4.3 System Simulations
  • References
  • 8 Channel Coding
  • 8.1 Fundamental Limits of Forward Error Correction
  • 8.1.1 The Binary AWGN Channel
  • 8.1.2 Coding Schemes for the Binary-AWGN Channels
  • 8.1.3 Performance Metrics
  • 8.2 FEC Schemes for the Bi-AWGN Channel
  • 8.2.1 Introduction
  • 8.2.2 Some De nitions
  • 8.2.3 LDPC Codes
  • 8.2.3.1 Fundamentals of LDPC Codes
  • 8.2.3.2 The LDPC-Code Solution Chosen for 5G NR
  • 8.2.4 Polar Codes
  • 8.2.4.1 Fundamentals of Polar Codes
  • 8.2.4.2 The Polar-Code Solution Chosen for 5G NR
  • Deterministic Reliability Ordering
  • Parity-Check Coding
  • Rate Adaptation
  • 8.2.5 Other Coding Schemes for the Short-Blocklength Regime
  • 8.2.5.1 Short Algebraic Linear Block Codes With Ordered-Statistics Decoding
  • 8.2.5.2 Linear Block Codes With Tail-Biting Trellises
  • 8.2.5.3 Nonbinary LDPC Codes
  • 8.2.5.4 Performance
  • 8.3 Coding Schemes for Fading Channels
  • 8.3.1 The SISO Case
  • 8.3.2 The MIMO Case
  • References
  • 9 Simulator
  • 9.1 Simulator Overview
  • 9.2 Functional Modules
  • 9.2.1 Channel Model
  • 9.2.2 Power Ampli er Model.
  • 9.2.3 Phase-Noise Model
  • 9.2.4 Synchronization
  • 9.2.5 Channel Estimation and Equalization
  • 9.3 Waveforms
  • 9.3.1 CP-OFDM
  • 9.3.2 W-OFDM
  • 9.3.3 UF-OFDM
  • 9.3.4 FBMC-OQAM
  • 9.3.5 FBMC-QAM
  • 9.4 Simulation Exercises
  • 9.4.1 Spectral Regrowth
  • 9.4.2 Impairment of CFO
  • 9.4.3 Impairment of PN
  • 9.4.4 Impairment of Fading Channel
  • References
  • Index
  • Back Cover.