Intelligent sensing and communicaitons for internet of everything

Intelligent Sensing and Communications for Internet of Everything introduces three application scenarios of enhanced mobile broadband (eMBB), large-scale machine connection (mMTC) and ultra reliable low latency communication (URLLC). A new communication model, namely backscatter communication (BackC...

Descripción completa

Detalles Bibliográficos
Otros Autores: Zhu, Zhengyu (Computer scientist), author (author), Chu, Zheng (Computer scientist) author, Li, Xingwang (Computer scientist) author
Formato: Libro electrónico
Idioma:Inglés
Publicado: London, England : Academic Press [2022]
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009835425406719
Tabla de Contenidos:
  • Front Cover
  • Intelligent Sensing and Communications for Internet of Everything
  • Copyright
  • Contents
  • 1 Background and introduction
  • 1.1 Background
  • 1.2 Introduction
  • 1.2.1 Progress of 6G around the world
  • 1.2.2 6G vision and its performance indicators
  • 1.2.3 Potential key technologies of 6G
  • 1.2.3.1 Three major operating scenarios of 5G eMBB, mMTC, and URLLC
  • 1.2.3.2 Backscatter technology and Intelligent Reflecting Surface technology in the Internet of Things
  • 1.2.3.3 Unmanned aerial vehicle technology in IoE
  • 1.2.3.4 mmWave technology and Terahertz technology IoT communications
  • 1.2.3.5 Artificial intelligence technology in the Internet of Things
  • 1.2.3.6 Fog/edge computing technology and big data system with IoT
  • 1.3 Suggestions to promote 6G research and development
  • 2 Three major operating scenarios of 5G: eMBB, mMTC, URLLC
  • 2.1 Introduction
  • 2.1.1 The comprehensive introduction for eMBB
  • 2.1.2 The comprehensive introduction for mMTC
  • 2.1.3 The comprehensive introduction for URLLC
  • 2.1.3.1 The key technology of URLLC
  • 2.1.3.2 Performance metrics for URLLC
  • 2.1.3.3 Shortcomings of URLLC
  • 2.2 Opportunistic spectrum sharing for D2D-based URLLC
  • 2.2.1 System model
  • 2.2.1.1 Problem formulation
  • 2.2.2 Optimal resource allocation
  • 2.2.2.1 Scheme 1
  • 2.3 Cooperative wireless-powered NOMA relaying for B5G IoT networks with hardware impairments and channel estimation errors
  • 2.3.1 System model
  • 2.3.1.1 Energy harvesting
  • 2.3.1.2 Information transmission
  • 2.3.2 Performance analysis
  • 2.3.3 Exact outage probability
  • 2.3.4 Asymptotic OP
  • 2.3.4.1 OP of Df
  • 2.3.4.2 Diversity order
  • 2.3.4.3 Diversity order of Df
  • 2.3.4.4 Diversity order of Dn
  • 2.3.5 Energy efficiency (EE)
  • 2.3.6 Power optimization for the sum rate
  • 2.3.7 Performance evaluation results and discussion.
  • 2.3.8 Conclusion
  • 2.4 I/Q imbalance aware nonlinear wireless-powered relaying of B5G networks: security and reliability analysis
  • 2.4.1 System model
  • 2.4.2 Performance analysis
  • 2.4.3 Outage probability analysis
  • 2.4.3.1 Random relay selection
  • 2.4.3.2 Optimal relay selection
  • 2.4.4 Intercept probability analysis
  • 2.4.4.1 Direct transmission
  • 2.4.4.2 Transmission via relay
  • 2.4.4.3 Numerical results
  • 2.4.4.4 Reliability analysis
  • 2.4.4.5 Security analysis
  • 2.4.5 Conclusions
  • References
  • 3 Backscatter technology and intelligent reflecting technology surface technology in the Internet of Things
  • 3.1 Introduction
  • 3.1.1 The classification of backscatter communication systems
  • 3.1.1.1 Monostatic backscatter communication (MBC) systems
  • 3.1.1.2 Bistatic backscatter communication (BBC) systems
  • 3.1.1.3 Ambient backscatter communication (AmBC) systems
  • 3.1.2 Fundamental of backscatter modulations
  • 3.1.3 Interplay of backscatter with other technologies
  • 3.1.3.1 The introduction of NOMA technology
  • 3.1.3.2 The cognitive radio
  • 3.1.3.3 The wireless powered communication
  • 3.1.3.4 The device-to-device communication
  • 3.1.3.5 The visible light communication
  • 3.1.3.6 The long-range communication
  • 3.1.4 The physical layer security
  • 3.1.5 Intelligent reflecting surface assisted wireless powered IoT networks
  • 3.2 Secrecy analysis of ambient backscatter NOMA systems under I/Q imbalance
  • 3.2.1 System model
  • 3.2.2 Performance analysis
  • 3.2.2.1 Outage probability analysis
  • 3.2.2.2 Intercept probability analysis
  • 3.2.3 Numerical results
  • 3.2.4 Conclusions
  • 3.3 Hardware impaired ambient backscatter NOMA systems: reliability and security
  • 3.3.1 System model
  • 3.3.2 Performance analysis
  • 3.3.2.1 OP analysis
  • 3.3.2.2 IP analysis
  • 3.3.3 Numerical results
  • 3.3.4 Conclusions.
  • 3.4 Physical layer security of cognitive ambient backscatter communications for green Internet-of-Things
  • 3.4.1 System model
  • 3.4.2 Performance analysis
  • 3.4.2.1 Outage probability analysis
  • 3.4.2.2 Intercept probability analysis
  • 3.4.3 Numerical results
  • 3.4.4 Conclusions
  • 3.5 Future research prospects
  • 3.5.1 Security and privacy
  • 3.5.2 Backscatter communication circuitry design
  • 3.5.3 EM energy harvester
  • 3.5.4 Hardware impairments
  • References
  • 4 Unmanned aerial vehicle technology in IoE
  • 4.1 Introduction
  • 4.1.1 Research status and development trend
  • 4.1.2 Research on transmission theory of UAV Communication System
  • 4.1.3 Physical layer security of wireless power supply network based on IRS-UAV
  • 4.1.4 Channel estimation and beamforming for UAV Communication System
  • 4.2 Energy efficiency characterization in heterogeneous IoT system with UAV swarms based on wireless power transfer
  • 4.2.1 System model
  • 4.2.1.1 Network model
  • 4.2.1.2 Air to ground channel model
  • 4.2.1.3 Energy harvesting model
  • 4.2.1.4 Cell association
  • 4.2.1.5 Performance metrics
  • 4.2.2 Transmission probability of the IoT-Ts
  • 4.2.2.1 One-slot charging
  • 4.2.2.2 Two-slot charging
  • 4.2.3 Coverage probability
  • 4.2.3.1 Coverage probability of the PAIDs
  • 4.2.3.2 Coverage probability of the FAIDs
  • 4.2.4 Energy efficiency
  • 4.2.5 Numerical results
  • 4.2.6 Conclusion
  • 4.3 UAV-aided multiway NOMA networks with residual hardware impairments
  • 4.3.1 System model
  • 4.3.1.1 The first case
  • 4.3.1.2 The first case
  • 4.3.1.3 The second case
  • 4.3.2 Achievable sum rate analysis
  • 4.3.2.1 Achievable sum rate analysis
  • 4.3.2.2 High SNR analysis
  • 4.3.3 Numerical results &amp
  • discussion
  • 4.3.4 Conclusion
  • 4.4 A unified framework for HS-UAV NOMA networks: performance analysis and location optimization.
  • 4.4.1 System model and fading model
  • 4.4.1.1 System model
  • 4.4.1.2 Fading model
  • 4.4.2 Outage probability analysis
  • 4.4.3 Outage probability
  • 4.4.3.1 Asymptotic outage probability
  • 4.4.3.2 Diversity order
  • 4.4.3.3 System throughput
  • 4.4.4 Location optimization
  • 4.4.5 Numerical results
  • 4.4.6 Conclusion
  • 4.5 Future research prospects
  • References
  • 5 MmWave technology and Terahertz technology IoT communications
  • 5.1 Introduction
  • 5.1.1 mmWave technology IoT communications
  • 5.1.1.1 Related works
  • 5.1.2 Terahertz technology IoT communications
  • 5.1.3 MIMO-OFDMA Terahertz IoT networks
  • 5.2 Hybrid precoding design for wideband THz massive MIMO-OFDM systems with beam squint
  • 5.2.1 Antenna structure and hybrid precoding design
  • 5.2.1.1 Fully-connected structure and hybrid precoding design
  • 5.2.1.2 Subarray structure and hybrid precoding design
  • 5.2.2 Simulation results
  • 5.2.3 Conclusions
  • 5.3 Robust beamforming designs in secure MIMO SWIPT IoT networks with a non-linear channel model
  • 5.3.1 System model
  • 5.3.1.1 Network model
  • 5.3.1.2 Transmission protocol
  • 5.3.1.3 Non-linear EH model
  • 5.3.2 Problem formulation and robust design methods
  • 5.3.2.1 Problem formulation
  • 5.3.2.2 Two-layer optimization approach
  • 5.3.2.3 Low-complexity SPCA algorithm
  • 5.3.2.4 Optimality analysis
  • 5.3.3 Computational complexity
  • 5.3.4 Simulation results
  • 5.3.5 Conclusion
  • 5.4 Robust design for intelligent reflecting surface assisted MIMO-OFDMA Terahertz IoT networks
  • 5.4.1 System model
  • 5.4.1.1 Problem formulation
  • 5.4.2 Solution of the weighted sum rate optimization problem
  • 5.4.2.1 Optimization of F and vm[k] under fixed Φ
  • 5.4.2.2 Optimization of Φ under fixed F and Vm[k]
  • 5.4.3 Extension to imperfect CSIs from IRS to users
  • 5.4.3.1 Optimization of F and vm[k] under fixed Φ.
  • 5.4.3.2 Optimization of Φ under fixed F and Vm[k]
  • 5.4.4 Numerical results
  • 5.4.5 Conclusion
  • 5.4.6 Proof of Theorem 5.4.1
  • References
  • 6 Artificial intelligence technology in the Internet of things
  • 6.1 Introduction
  • 6.2 Exploiting deep learning for secure transmission in an underlay cognitive radio network
  • 6.2.1 System model and problem formulation
  • 6.2.2 Conventional optimization based power allocation approach
  • 6.2.2.1 Perfect CSI
  • 6.3 Q-learning based task offloading and resources optimization for a collaborative computing system
  • 6.3.1 System model and problem formulation
  • 6.3.1.1 System model
  • 6.3.1.2 Computation model
  • 6.3.1.3 Local computing
  • 6.3.1.4 Collaborative cloud computing
  • 6.3.2 Wireless communication model
  • 6.3.3 MDP model of offloading decision process
  • 6.3.3.1 State space S
  • 6.3.3.2 Action set A
  • 6.3.3.3 Policy
  • 6.3.3.4 Loss function and reward
  • 6.3.4 Communication and computation resources optimization
  • 6.3.4.1 Uplink transmission power allocation
  • References
  • 7 Fog/edge computing technology and big data system with IoT
  • 7.1 Introduction
  • 7.1.1 MEC: overview and resource allocation
  • 7.1.1.1 MEC: overview
  • 7.1.1.2 Single-user and multiuser MEC
  • 7.1.1.3 MIMO-assisted MEC
  • 7.1.2 Massive MIMO-assisted MEC
  • 7.1.2.1 Motivation
  • 7.1.2.2 State-of-the-art
  • 7.2 Edge cache-assisted secure low-latency millimeter wave transmission
  • 7.2.1 Related works
  • 7.2.2 System model and problem formulation
  • 7.2.2.1 System model
  • 7.2.3 Problem formulation
  • 7.2.3.1 Problem solution
  • 7.2.3.2 Beamforming design at the fronthaul link
  • 7.2.3.3 Beamforming design at the access link
  • 7.2.4 Numerical results
  • 7.2.5 Conclusion
  • 7.3 Delay minimization for massive MIMO assisted mobile edge computing
  • 7.3.1 System model and problem formulation
  • 7.3.1.1 System model.
  • 7.3.1.2 Communication model.