Green energy systems design, modeling, synthesis and applications

"Green Energy Systems: Design, Modelling, Synthesis and Applications provides a comprehensive introduction to the design, modeling, optimization and application of predictable and alternative energy systems. With a strong focus on the fundamentals, the book provides an overview of the energy po...

Descripción completa

Detalles Bibliográficos
Otros Autores: Singh, Vinod Kumar, editor (editor)
Formato: Libro electrónico
Idioma:Inglés
Publicado: London, England ; San Diego, California : Academic Press [2023]
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009835422806719
Tabla de Contenidos:
  • Front Cover
  • Green Energy Systems
  • Green Energy Systems: Design, Modeling, Synthesis and Applications
  • Copyright
  • Contents
  • List of contributors
  • 1 - An investigation of a photovoltaic system under distinguished thermal environment conditions
  • 1. Introduction
  • 2. System description
  • 3. Modeling of PV system
  • 4. Experimental analysis
  • 4.1 Air-type solar PV/thermal system
  • 4.2 Water-type solar PV/thermal system
  • 4.3 Refrigerant-type PV/thermal system
  • 4.4 Bifluid-type PV/thermal system
  • 4.5 Glazed solar PV/thermal system
  • 4.6 Unglazed solar PV/thermal system
  • 5. Results and discussion
  • 5.1 PV system performance at normal conditions
  • 5.2 PV/T system performance with only water flow
  • 5.3 PV/T system performance with single-glazed water flow
  • 5.4 PV/T system performance with reflector
  • 5.5 PV/T system performance with water flow and reflector
  • 5.6 PV/T system performance with aerosol condition
  • 5.7 PV/T system performance with aerosol and water flow
  • 5.8 PV/T system performance with aerosol and water flow with reflector
  • 5.9 Polycrystalline comparison between all thermal conditions for PV/T system
  • 5.10 Performance comparison between polycrystalline and monocrystalline PV/T systems
  • 6. Conclusion
  • Appendix
  • References
  • 2 - Design and simulation of a renewable-based sustainable electrification system for a water purification plant
  • 1. Introduction
  • 2. Case study modeling and problem statement
  • 2.1 System problem statement
  • 2.2 Plant energy modeling
  • 2.3 Renewable resource analysis
  • 3. Research methodology-Retscreen simulation
  • 4. Results and discussion
  • 4.1 Fuel consumption
  • 4.2 Emissions benchmark
  • 4.3 Energy cost benchmark
  • 4.4 Sustainability development indices
  • 4.5 Financial viability
  • 4.6 Cash flow
  • 4.7 Financial risk impacts
  • 5. Conclusion
  • References.
  • 3 - Biomass energy conversion through pyrolysis: A ray of hope for the current energy crisis
  • 1. Introduction
  • 2. Biomass pyrolysis-mechanism of product conversion
  • 2.1 Conversion of cellulose
  • 2.2 Conversion of hemicellulose
  • 2.3 Conversion of lignin
  • 3. Biomass pyrolysis reactors
  • 3.1 Fast pyrolysis reactors
  • 3.1.1 Bubbling fluidized bed reactors
  • 3.1.2 Auger reactors
  • 3.1.3 Fixed-bed reactors
  • 3.1.4 Circulating fluidized bed reactor
  • 3.1.5 Rotating cone reactors
  • 3.1.6 Ablative reactors
  • 3.1.7 Grinding pyrolysis reactors
  • 3.2 Slow pyrolysis reactors
  • 3.2.1 Kilns
  • 3.2.2 Retorts
  • 4. Pretreatment techniques
  • 4.1 Physical techniques
  • 4.1.1 Mechanical extrusion
  • 4.1.2 Crushing and grinding
  • 4.2 Chemical techniques
  • 4.2.1 Dilute acid
  • 4.2.2 Mild alkali
  • 4.2.3 Ozonolysis
  • 4.3 Physiochemical techniques
  • 4.4 Steam explosion
  • 4.4.1 Ammonia-based techniques
  • 4.4.2 Wet oxidation
  • 4.4.3 Biological techniques
  • 4.5 Thermal techniques
  • 4.5.1 Densification
  • 4.5.2 Dry torrefaction
  • 4.5.3 Microwave
  • 4.5.4 Ultrasound
  • 5. Influence of reaction conditions on product
  • 5.1 Temperature
  • 5.2 Heating rate
  • 5.3 Residence time
  • 6. Advancements in biomass pyrolysis
  • 7. Conclusion
  • References
  • 4 - Effects of an hourly tariff on the electricity power sector-the Honduran model
  • 1. Introduction
  • 2. Current challenge in Honduras
  • 3. Theoretical framework
  • 3.1 Time tariff
  • 3.1.1 General law of the electricity industry for hourly tariffs
  • 3.2 User's valid tariff and provisional tariff regulation
  • 4. Used methodology
  • 5. Analysis and results
  • 5.1 Analysis of the curve of electricity consumption and power demand
  • 5.2 Update of energy costs by time tariff
  • 5.3 Correlation between the electric tariff and the dollar exchange tariff.
  • 5.4 Load profiles and consumption sectors in Honduras
  • 6. Conclusions
  • 7. Recommendations
  • References
  • 5 - Solar energy and gasification of MSW: two promising green energy options
  • 1. Introduction
  • 2. Nonrenewable energy
  • 2.1 Demerits of nonrenewable energy
  • 3. Building a clean energy future through renewable energy
  • 4. Various types of renewable energy
  • 5. Solar energy as renewable energy
  • 5.1 Solar photovoltaic
  • 5.1.1 Working of a solar photovoltaic system
  • 5.1.2 Classifications of solar panels
  • 5.1.3 Applications of a photovoltaic system
  • 5.1.4 Efficiency calculation of a solar cell
  • 5.1.5 Disadvantages of a PV system
  • 5.2 Concentrated solar power
  • 5.2.1 Working of a concentrated solar power
  • 5.2.2 Types of concentrated solar power
  • 5.2.3 Parabolic trough system
  • 5.2.4 Linear Fresnel reflectors
  • 5.2.5 Solar dish
  • 5.2.5.1 SAIC/STM solar dish system
  • 5.2.5.2 ARUN solar dish system
  • 5.2.6 Power tower or central receiver system
  • 5.3 Thermal storage
  • 5.4 Power block
  • 6. Municipal solid waste as renewable energy
  • 6.1 Types of municipal solid waste
  • 6.2 Gasification process of municipal solid waste
  • 6.3 Power block
  • 6.4 Gas turbine cycle
  • 6.5 Steam turbine cycle
  • 6.6 Combined cycle
  • 6.6.1 Performance parameters
  • 7. Conclusion
  • References
  • 6 - RF energy harvesting
  • 1. Introduction
  • 1.1 Motivation for wireless energy harvesting
  • 2. RF energy harvesting
  • 2.1 RF energy sources in India
  • 3. Matching circuit and antenna
  • 4. Photovoltaic energy harvesting
  • 4.1 Hybrid energy harvester
  • 4.2 Thermoelectric energy harvesting
  • 5. Load or energy storage
  • 6. RF-DC converters
  • 7. Energy storage device efficiency
  • 7.1 Batteries
  • 7.2 Supercapacitors
  • 7.3 Power management
  • 8. Recent trends in rectennas
  • 8.1 Methods to design an efficient RFEH system.
  • 9. Applications
  • 9.1 Healthcare of animals
  • 9.2 Wearable devices
  • 9.3 5G-assisted RF-EHWC
  • 10. Conclusion
  • References
  • 7 - Innovations of the future of solar energy and COVID-19 impact
  • 1. Introduction
  • 2. Solar panels generate electricity in a variety of ways
  • 3. Solar panel energy cost disadvantages
  • 4. The future of solar energy
  • 5. Advantages of floatovoltaics
  • 6. Advantages of solar windows
  • 7. Advantages of a solar fabric system
  • 8. Solar cell fabric's working mechanism
  • 9. Solar cell fabric's future
  • 10. Impact of COVID-19 on the global solar thermal fuel market
  • 11. Vision for solar energy's post-COVID-19 future
  • 12. COVID-19's impact on future renewable energy use
  • References
  • 8 - Potential of ionic liquids in green energy resources
  • 1. Introduction
  • 2. Applications of ionic liquids
  • 2.1 Imidazolium-based ionic liquids
  • 2.2 Ammonium-based ionic liquid
  • 2.3 Sulfonium-based ionic liquid
  • 3. Ionic liquids in green energy
  • 3.1 Conversion of CO2 into fuel or fuel components
  • 3.2 Conversion of CO2
  • 3.2.1 Carbon monoxide
  • 3.2.2 Formic acid
  • 3.2.3 Alcohols
  • 3.3 Biomass conversion to biofuels
  • 3.4 Biodiesel
  • 3.5 Electrochemical sensors
  • 3.6 Carbon nanotubes
  • 3.7 Energy storage devices
  • 3.7.1 Li-ion batteries
  • 3.7.2 Vanadium redox flow batteries
  • 4. Conclusion
  • References
  • 9 - Magnetocaloric materials for green refrigeration
  • 1. Introduction
  • 2. Magnetocaloric effect
  • 3. Parameters to calculate the magnetocaloric effect
  • 4. Applications of MCE
  • 5. Properties of an ideal magnetic refrigerator material
  • 6. Methods for determination of the magnetocaloric effect
  • 6.1 Direct measurements
  • 6.2 Indirect measurements
  • 6.2.1 MCE from magnetization measurements
  • 6.2.2 MCE from heat capacity measurements.
  • 7. Magnetocaloric materials for near room-temperature applications
  • 8. Materials for low-temperature applications
  • References
  • 10 - A jigsaw puzzle-based reconfiguration technique for enhancing maximum power in partially shaded hybrid photovoltaic ar ...
  • 1. Introduction
  • 1.1 Novelty of the study
  • 2. Mathematical model of PV array
  • 3. Methodology
  • 3.1 Formation of the proposed jigsaw puzzle arrangement
  • 3.2 Physical relocation of modules in the PV array
  • 3.3 Mathematical analysis of the PV array configurations
  • 3.3.1 TCT PV array configuration
  • 3.3.2 SPTCT PV array configuration
  • 3.3.3 BLTCT PV array configuration
  • 3.3.4 HCTCT PV array configuration
  • 3.4 Description of the existing puzzle patterns
  • 4. Conclusion
  • References
  • 11 - A jigsaw puzzle-based reconfiguration technique for enhancing maximum power in partially shaded hybrid photovoltaic ar ...
  • 1. Introduction
  • 2. Partial shading scenario
  • 2.1 Case 1: short narrow
  • 2.2 Case 2: short wide
  • 2.3 Case 3: long narrow
  • 2.4 Case 4: long wide
  • 3. Performance parameter
  • 3.1 % Power loss
  • 3.2 Mismatch loss
  • 3.3 Fill factor
  • 3.4 Execution ratio
  • 3.5 % Performance enhancement ratio compared to the conventional configuration
  • 4. Results and discussion
  • 4.1 Case 1 short narrow
  • 4.1.1 TCT configuration
  • 4.1.2 SPTCT configuration
  • 4.1.3 BLTCT configuration
  • 4.1.4 HCTCT configuration
  • 4.2 Case 2 short wide
  • 4.2.1 TCT configuration
  • 4.2.2 SPTCT configuration
  • 4.2.3 BLTCT configuration
  • 4.2.4 HCTCT configuration
  • 4.3 Case 3 long narrow
  • 4.3.1 TCT configuration
  • 4.3.2 SPTCT configuration
  • 4.3.3 BLTCT configuration
  • 4.3.4 HCTCT configuration
  • 4.4 Case 4 long wide
  • 4.4.1 TCT configuration
  • 4.4.2 SPTCT configuration
  • 4.4.3 BLTCT configuration
  • 4.4.4 HCTCT configuration
  • 5. Experimental verification.
  • 6. Conclusion.